Generalized descriptive set theory and classification theory


Autoria(s): Friedman, Sy D.; Hyttinen, Tapani; Kulikov, Vadim
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/12/2010

Resumo

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Formato

99

615547 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/169475

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;999

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Lògica matemàtica #Conjunts, Teoria de #Models, Teoria dels #510 - Consideracions fonamentals i generals de les matemàtiques
Tipo

info:eu-repo/semantics/preprint