20 resultados para Self-organization of States
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein¿s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors¿s induced stress haloes, now forming a set of equidistant veins, as observed.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simpli ed sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the rst time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and ne sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur.
Resumo:
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
Resumo:
We propose a procedure for analyzing and characterizing complex networks. We apply this to the social network as constructed from email communications within a medium sized university with about 1700 employees. Email networks provide an accurate and nonintrusive description of the flow of information within human organizations. Our results reveal the self-organization of the network into a state where the distribution of community sizes is self-similar. This suggests that a universal mechanism, responsible for emergence of scaling in other self-organized complex systems, as, for instance, river networks, could also be the underlying driving force in the formation and evolution of social networks.
Resumo:
We present a system for dynamic network resource configuration in environments with bandwidth reservation. The proposed system is completely distributed and automates the mechanisms for adapting the logical network to the offered load. The system is able to manage dynamically a logical network such as a virtual path network in ATM or a label switched path network in MPLS or GMPLS. The system design and implementation is based on a multi-agent system (MAS) which make the decisions of when and how to change a logical path. Despite the lack of a centralised global network view, results show that MAS manages the network resources effectively, reducing the connection blocking probability and, therefore, achieving better utilisation of network resources. We also include details of its architecture and implementation
Resumo:
This paper describes a pilot study centred on the technology-enhanced self-development of competences in lifelong learning education carried out in the challenging context of the Association of Participants Àgora. The pilot study shows that the use of the TENCompetence infrastructure, i.e. in this case the Personal Development Planner tool, provides various kinds of benefits for adult participants with low educational profiles and who are traditionally excluded from the use of innovative learning technologies and the knowledge society. The selforganized training supported by the PDP tool aims at allowing the learners to create and control their own learning plans based on their interests and educational background including informal and non-formal experiences. In this sense, the pilot participants had the opportunity to develop and improve their competences in English language (basic and advanced levels) and ICT competence profiles which are mostly related to functional and communicative skills. Besides, the use of the PDP functionalities, such as the self-assessment, the planning and the self-regulating elements allowed the participants to develop reflective skills. Pilot results also provide indications for future developments in the field of technology support for self-organized learners. The paper introduces the context and the pilot scenario, indicates the evaluation methodology applied and discusses the most significant findings derived from the pilot study.
Resumo:
This paper analyzes the formation of Research Corporations as an alternative governance structure for performing R&D compared to pursuing in-house R&D projects. Research Corporations are privatefor-profit research centers that bring together several firms with similar research goals. In a Research Corporation formal authority over the choice of projects is jointly exercised by the top management of the member firms. A private for-profit organization cannot commit not to interfere with the project choice of the researchers. However, increasing the number of member firms of the Research Corporation reduces the incentive of member firms to meddle with the research projects of researchers because exercising formal authority over the choice of research projects is a public good. The Research Corporation thus offers researchers greater autonomy than a single firm pursuing an identical research program in its in-house R&D department. This attracts higher ability researchers to the Research Corporation compared to the internal R&D department. The paper uses the theoretical model to analyze the organization of the Microelectronics and Computer Technology Corporation (MCC). The facts of this case confirm the existence of a tension between control over the choice of research projects and the ability of researchers that the organization is able to attract or hold onto.
Resumo:
The organizational design of research and development conditions theincentives of the researchers of the research project. In particular,the organizational form determines the allocation of effort of theresearcher between time spent on research and time spent lobbying management. Researchers prefer to spend their time on research. However,the researchers only get utility from performing research if theproject is approved for its full duration. Spending time lobbyingmanagement for the continuation of the researcher s project increasesthe probability that the management observes a favorable signal aboutthe project. Organizing a research joint venture increases theflexibility of the organizational form with respect to the continuationdecision. For low correlation between the signals of the partners aboutthe expected profitability of the project, we find that the organizationof a research joint venture reduces influence activity by the researchersand increases expected profits of the partners. For high correlationbetween the signals, internal research projects lower influence activityby the researchers. We try to relate the correlation of the partnerssignals to the characteristics of basic research versus more appliedresearch projects, and find that the model is consistent with theobservation that research joint ventures seem involved in more basicresearch projects compared to internal R&D departments, whichconcentrate on more applied research.
Resumo:
Starting from a finite or countable set of states of health, and assumingthe existence of an objective transitive preference relation on that set,we propose a way of performing interpersonal comparisons of states ofhealth. In so doing, we first consider the population divided into types,and consider that two individuals of a different type have a comparablestate of health whenever they sit at the same centile of their respectivetype. A way of comparing and evaluating states of health for differentgroups is then proposed and rationalized. This can be viewed as both analternative and an extension of the traditional QALY approach.
Resumo:
This paper deals with the determination of the interface density of states in amorphous silicon-based multilayers. Photothermal deflection spectroscopy is used to characterize two series of aSi:H/aSi1-xCx:H multilayers, and a new approach in the treatment of experimental dada is used in order to obtain accurate results. From this approach, an upper limit of 10^10 cm-2 is determined for the interface density of states.
Resumo:
We report a systematic study of the low-temperature electrical conductivity in a series of SrRuO3 epitaxial thin films. At relatively high temperature the films display the conventional metallic behavior. However, a well-defined resistivity minimum appears at low temperature. This temperature dependence can be well described in a weak localization scenario: the resistivity minimum arising from the competition of electronic self-interference effects and the normal metallic character. By appropriate selection of the film growth conditions, we have been able to modify the mean-free path of itinerant carriers and thus to tune the relative strength of the quantum effects. We show that data can be quantitatively described by available theoretical models.
Resumo:
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
Resumo:
In this paper we give some ideas that can be useful to solve Schrödinger equations in the case when the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the large coupling constant. The procedure followed consists in considering that the small part of the Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same.