23 resultados para STATE-SPACE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente
Resumo:
El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente
Resumo:
In this paper we propose a latent variable model, in the spirit of Israilevich and Kuttner (1993), to measure regional manufacturing production. To test the validity of the proposed methodology, we have applied it for those Spanish regions that have a direct quantitative index. The results demonstrate the accuracy of the methodology proposed and show that it can overcome some of the difficulties of the indirect method applied by the INE, the Spanish National Institute of Statistics.
Resumo:
In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
There is growing evidence that nonlinear time series analysis techniques can be used to successfully characterize, classify, or process signals derived from realworld dynamics even though these are not necessarily deterministic and stationary. In the present study we proceed in this direction by addressing an important problem our modern society is facing, the automatic classification of digital information. In particular, we address the automatic identification of cover songs, i.e. alternative renditions of a previously recorded musical piece. For this purpose we here propose a recurrence quantification analysis measure that allows tracking potentially curved and disrupted traces in cross recurrence plots. We apply this measure to cross recurrence plots constructed from the state space representation of musical descriptor time series extracted from the raw audio signal. We show that our method identifies cover songs with a higher accuracy as compared to previously published techniques. Beyond the particular application proposed here, we discuss how our approach can be useful for the characterization of a variety of signals from different scientific disciplines. We study coupled Rössler dynamics with stochastically modulated mean frequencies as one concrete example to illustrate this point.
Resumo:
Revenue management practices often include overbooking capacity to account for customerswho make reservations but do not show up. In this paper, we consider the network revenuemanagement problem with no-shows and overbooking, where the show-up probabilities are specificto each product. No-show rates differ significantly by product (for instance, each itinerary andfare combination for an airline) as sale restrictions and the demand characteristics vary byproduct. However, models that consider no-show rates by each individual product are difficultto handle as the state-space in dynamic programming formulations (or the variable space inapproximations) increases significantly. In this paper, we propose a randomized linear program tojointly make the capacity control and overbooking decisions with product-specific no-shows. Weestablish that our formulation gives an upper bound on the optimal expected total profit andour upper bound is tighter than a deterministic linear programming upper bound that appearsin the existing literature. Furthermore, we show that our upper bound is asymptotically tightin a regime where the leg capacities and the expected demand is scaled linearly with the samerate. We also describe how the randomized linear program can be used to obtain a bid price controlpolicy. Computational experiments indicate that our approach is quite fast, able to scale to industrialproblems and can provide significant improvements over standard benchmarks.
Resumo:
The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.
Resumo:
Researchers have used stylized facts on asset prices and trading volumein stock markets (in particular, the mean reversion of asset returnsand the correlations between trading volume, price changes and pricelevels) to support theories where agents are not rational expected utilitymaximizers. This paper shows that this empirical evidence is in factconsistent with a standard infite horizon perfect information expectedutility economy where some agents face leverage constraints similar tothose found in todays financial markets. In addition, and in sharpcontrast to the theories above, we explain some qualitative differencesthat are observed in the price-volume relation on stock and on futuresmarkets. We consider a continuous-time economy where agents maximize theintegral of their discounted utility from consumption under both budgetand leverage con-straints. Building on the work by Vila and Zariphopoulou(1997), we find a closed form solution, up to a negative constant, for theequilibrium prices and demands in the region of the state space where theconstraint is non-binding. We show that, at the equilibrium, stock holdingsvolatility as well as its ratio to stock price volatility are increasingfunctions of the stock price and interpret this finding in terms of theprice-volume relation.
Resumo:
The paper proposes a numerical solution method for general equilibrium models with a continuum of heterogeneous agents, which combines elements of projection and of perturbation methods. The basic idea is to solve first for the stationary solutionof the model, without aggregate shocks but with fully specified idiosyncratic shocks. Afterwards one computes a first-order perturbation of the solution in the aggregate shocks. This approach allows to include a high-dimensional representation of the cross-sectional distribution in the state vector. The method is applied to a model of household saving with uninsurable income risk and liquidity constraints. The model includes not only productivity shocks, but also shocks to redistributive taxation, which cause substantial short-run variation in the cross-sectional distribution of wealth. If those shocks are operative, it is shown that a solution method based on very few statistics of the distribution is not suitable, while the proposed method can solve the model with high accuracy, at least for the case of small aggregate shocks. Techniques are discussed to reduce the dimension of the state space such that higher order perturbations are feasible.Matlab programs to solve the model can be downloaded.
Resumo:
This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.
Resumo:
Planning with partial observability can be formulated as a non-deterministic search problem in belief space. The problem is harder than classical planning as keeping track of beliefs is harder than keeping track of states, and searching for action policies is harder than searching for action sequences. In this work, we develop a framework for partial observability that avoids these limitations and leads to a planner that scales up to larger problems. For this, the class of problems is restricted to those in which 1) the non-unary clauses representing the uncertainty about the initial situation are nvariant, and 2) variables that are hidden in the initial situation do not appear in the body of conditional effects, which are all assumed to be deterministic. We show that such problems can be translated in linear time into equivalent fully observable non-deterministic planning problems, and that an slight extension of this translation renders the problem solvable by means of classical planners. The whole approach is sound and complete provided that in addition, the state-space is connected. Experiments are also reported.
Resumo:
Experimental results of a new controller able to support bidirectional power flow in a full-bridge rectifier with boost-like topology are obtained. The controller is computed using port Hamiltonian passivity techniques for a suitable generalized state space averaging truncation system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation results for the full system show the essential correctness of the simplifications introduced to obtain the controller, although some small experimental discrepancies point to several aspects that need further improvement.
Resumo:
We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)10.1088/1751-8113/44/39/395004]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.
Resumo:
Available empirical evidence regarding the degree of symmetry between European economies in the context of Monetary Unification is not conclusive. This paper offers new empirical evidence concerning this issue related to the manufacturing sector. Instead of using a static approach as most empirical studies do, we analyse the dynamic evolution of shock symmetry using a state-space model. The results show a clear reduction of asymmetries in terms of demand shocks between 1975 and 1996, with an increase in terms of supply shocks at the end of the period.