A low dimensional Kalman filter for systems with lagged observables


Autoria(s): Nimark, Kristoffer
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

13/05/2010

Resumo

This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.

Identificador

http://hdl.handle.net/10230/6067

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Macroeconomics and International Economics #kalman filter #lagged observables #kalman smoother #simulation smoother
Tipo

info:eu-repo/semantics/workingPaper