68 resultados para Numerical Algorithms
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
Report for the scientific sojourn carried out in the International Center for Numerical Methods in Engineering (CIMNE) –state agency – from February until November 2007. The work within the project Technology innovation in underground construction can be grouped into the following tasks: development of the software for modelling underground excavation based on the discrete element method - the numerical algorithms have been implemented in the computer programs and applied to simulation of excavation using roadheaders and TBM-s -; coupling of the discrete element method with the finite element method; development of the numerical model of rock cutting taking into account of wear of rock cutting tools -this work considers a very important factor influencing effectiveness of underground works -.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
Resumo:
Langevin Equations of Ginzburg-Landau form, with multiplicative noise, are proposed to study the effects of fluctuations in domain growth. These equations are derived from a coarse-grained methodology. The Cahn-Hiliard-Cook linear stability analysis predicts some effects in the transitory regime. We also derive numerical algorithms for the computer simulation of these equations. The numerical results corroborate the analytical predictions of the linear analysis. We also present simulation results for spinodal decomposition at large times.
Resumo:
It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.
Resumo:
"Vegeu el resum a l'inici del fitxer adjunt."
Resumo:
We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.
Resumo:
Estudi elaborat a partir d’una estada a l'Imperial College of London, Gran Bretanya, entre setembre i desembre 2006. Disposar d'una geometria bona i ben definida és essencial per a poder resoldre eficientment molts dels models computacionals i poder obtenir uns resultats comparables a la realitat del problema. La reconstrucció d'imatges mèdiques permet transformar les imatges obtingudes amb tècniques de captació a geometries en formats de dades numèriques . En aquest text s'explica de forma qualitativa les diverses etapes que formen el procés de reconstrucció d'imatges mèdiques fins a finalment obtenir una malla triangular per a poder‐la processar en els algoritmes de càlcul. Aquest procés s'inicia a l'escàner MRI de The Royal Brompton Hospital de Londres del que s'obtenen imatges per a després poder‐les processar amb les eines CONGEN10 i SURFGEN per a un entorn MATLAB. Aquestes eines les han desenvolupat investigadors del Bioflow group del departament d'enginyeria aeronàutica del Imperial College of London i en l'ultim apartat del text es comenta un exemple d'una artèria que entra com a imatge mèdica i surt com a malla triangular processable amb qualsevol programari o algoritme que treballi amb malles.
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Per a determinar la dinàmica espai-temporal completa d’un sistema quàntic tridimensional de N partícules cal integrar l’equació d’Schrödinger en 3N dimensions. La capacitat dels ordinadors actuals permet fer-ho com a molt en 3 dimensions. Amb l’objectiu de disminuir el temps de càlcul necessari per a integrar l’equació d’Schrödinger multidimensional, es realitzen usualment una sèrie d’aproximacions, com l’aproximació de Born–Oppenheimer o la de camp mig. En general, el preu que es paga en realitzar aquestes aproximacions és la pèrdua de les correlacions quàntiques (o entrellaçament). Per tant, és necessari desenvolupar mètodes numèrics que permetin integrar i estudiar la dinàmica de sistemes mesoscòpics (sistemes d’entre tres i unes deu partícules) i en els que es tinguin en compte, encara que sigui de forma aproximada, les correlacions quàntiques entre partícules. Recentment, en el context de la propagació d’electrons per efecte túnel en materials semiconductors, X. Oriols ha desenvolupat un nou mètode [Phys. Rev. Lett. 98, 066803 (2007)] per al tractament de les correlacions quàntiques en sistemes mesoscòpics. Aquesta nova proposta es fonamenta en la formulació de la mecànica quàntica de de Broglie– Bohm. Així, volem fer notar que l’enfoc del problema que realitza X. Oriols i que pretenem aquí seguir no es realitza a fi de comptar amb una eina interpretativa, sinó per a obtenir una eina de càlcul numèric amb la que integrar de manera més eficient l’equació d’Schrödinger corresponent a sistemes quàntics de poques partícules. En el marc del present projecte de tesi doctoral es pretén estendre els algorismes desenvolupats per X. Oriols a sistemes quàntics constituïts tant per fermions com per bosons, i aplicar aquests algorismes a diferents sistemes quàntics mesoscòpics on les correlacions quàntiques juguen un paper important. De forma específica, els problemes a estudiar són els següents: (i) Fotoionització de l’àtom d’heli i de l’àtom de liti mitjançant un làser intens. (ii) Estudi de la relació entre la formulació de X. Oriols amb la aproximació de Born–Oppenheimer. (iii) Estudi de les correlacions quàntiques en sistemes bi- i tripartits en l’espai de configuració de les partícules mitjançant la formulació de de Broglie–Bohm.