Langevin equations with multiplicative noise: Application to domain growth


Autoria(s): Sancho, José M.; Hernández Machado, Aurora; Ramírez de la Piscina, Laureano; Lacasta Palacio, Ana María
Contribuinte(s)

Universitat de Barcelona

Resumo

Langevin Equations of Ginzburg-Landau form, with multiplicative noise, are proposed to study the effects of fluctuations in domain growth. These equations are derived from a coarse-grained methodology. The Cahn-Hiliard-Cook linear stability analysis predicts some effects in the transitory regime. We also derive numerical algorithms for the computer simulation of these equations. The numerical results corroborate the analytical predictions of the linear analysis. We also present simulation results for spinodal decomposition at large times.

Identificador

http://hdl.handle.net/2445/52698

Idioma(s)

eng

Publicador

Jagiellonian University

Direitos

cc-by-nc (c) Sancho, José M. et al., 1993

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc/3.0/es">http://creativecommons.org/licenses/by-nc/3.0/es</a>

Palavras-Chave #Processos estocàstics #Simulació per ordinador #Soroll #Algorismes #Equacions diferencials estocàstiques #Mecànica estadística #Stochastic processes #Computer simulation #Noise #Algorithms #Stochastic differential equations #Statistical mechanics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion