78 resultados para Motion classification

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El treball presentat suposa una visió general de l'"Endoscopia amb Càpsula de Vídeo Wireless" i la inspecció de sequències de contraccions intestinals amb les últimes tecnologies de visió per computador. Després de la observació preliminar dels fonaments mèdics requerits, la aplicació de visió per computador es presenta en aquestos termes. En essència, aquest treball proveïx una exhaustiva selecció, descripció i avaluació de cert conjunt de mètodes de processament d'imatges respecte a l'anàlisi de moviment, en el entorn de seqüències d'imatges preses amb una càpsula endoscòpica. Finalment, es presenta una aplicació de software per configurar i emprar de forma ràpida i fàcil un entorn experimental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es va realitzar el II Workshop en Tomografia Computeritzada (TC) a Monells. El primer dia es va dedicar íntegrament a la utilització del TC en temes de classificació de canals porcines, i el segon dia es va obrir a altres aplicacions del TC, ja sigui en animals vius o en diferents aspectes de qualitat de la carn o els productes carnis. Al workshop hi van assistir 45 persones de 12 països de la UE. The II workshop on the use of Computed Tomography (CT) in pig carcass classification. Other CT applications: live animals and meat technology was held in Monells. The first day it was dedicated to the use of CT in pig carcass classification. The segond day it was open to otehr CT applications, in live animals or in meat and meat products quality. There were 45 assistants of 12 EU countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence