14 resultados para Microbiology|Biochemistry|Organic chemistry
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A novel method to synthesize cyclic oligonucleotides (5- to 26-mer) using the thiol-maleimide reaction is described. The target molecules were obtained after subsequent removal of thiol and maleimide protecting groups from 5′-maleimido-3′-thiol-derivatized linear precursors. Retro-Diels-Alder conditions deprotecting the maleimide simultaneously promoted cyclization cleanly and in high yield.
Resumo:
Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it has become one of the most important structures in Organic Chemistry. Lately, kinetic resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This review aims to cover and discuss the development of this topic.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
A practical solution to the formation of mixtures of E/Z and open/cyclic isomers in the reaction of (2R,4S)-4-hydroxy-2-methylpentanal (as its hemiacetal, a lactol) with conjugated phosphoranes (stabilised Wittig reagents) and Horner-Wadsworth-Emmons reagents is disclosed. The HWE reaction has a strong bias to give oxolanes. On the other hand, stabilised Wittig reagents give unsaturated carboxyl derivatives of configuration E (major) and oxolanes (minor); the latter can be avoided by addition of CF3CH2OH or using morpholine amide phosphorane.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
A synthetic route to enantiopure cis-2,4-disubstituted and 2,4-bridged piperidines is reported, the key step being a stereoselective conjugate addition of an organocuprate to a phenylglycinol-derived unsaturated lactam bearing a substituent at the 8a-position.
Resumo:
A method to generate carbonylic compounds from alkynes under mild and neutral conditions, with excellent functional group compatibility and high yields, is described. Hydration takes place under catalytic conditions by using from 0.1 to 0.2 equivalents of the easily available and inexpensive mercury(II) p-toluensulfonamidate in a hydroalcoholic solution. After use the catalyst is iner tized and/or recycled ...
Resumo:
We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.
Resumo:
We have synthesized a series of dimers of (+)-(7R,11R)-huprine Y and evaluated their activity against Trypanosoma brucei, Plasmodium falciparum, rat myoblast L6 cells and human acetylcholinesterase (hAChE), and their brain permeability. Most dimers have more potent and selective trypanocidal activity than huprine Y and are brain permeable, but they are devoid of antimalarial activity and remain active against hAChE. Lead optimization will focus on identifying compounds with a more favourable trypanocidal/anticholinesterase activity ratio.
Resumo:
The indole ring is one of the most common features in natural products and small molecules with important bioactivity. Larock reported a new methodology for the synthesis of the indole ring system based on the palladium-catalyzed heteroannulation of 2-iodoaniline and substituted alkyne moieties. This procedure was subsequently extended to the preparation of other nitrogen- and oxygen- containing heterocycles. This is the process of choice for the synthesis of a large number of heterocyclic derivatives, as it provides outstanding regioselectivity and good to excellent yields.
Resumo:
The indole ring is one of the most common features in natural products and small molecules with important bioactivity. Larock reported a new methodology for the synthesis of the indole ring system based on the palladium-catalyzed heteroannulation of 2-iodoaniline and substituted alkyne moieties. This procedure was subsequently extended to the preparation of other nitrogen- and oxygen- containing heterocycles. This is the process of choice for the synthesis of a large number of heterocyclic derivatives, as it provides outstanding regioselectivity and good to excellent yields.
Resumo:
We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.
Resumo:
Els avenços en les bases dels mètodes teòrics i l'espectacular desenvolupament de la potència de càlcul han fet possible progressar enormement en el somni dels fundadors de la química, és a dir, ser capaços d'estudiar amb mètodes computacionals el conjunt de processos químics. Actualment, la química teòrica està completant el darrer avenç: intentar esdevenir l'eina més recent per a comprendre la naturalesa química dels éssers vius. Aquesta revisió pretén mostrar com els mètodes de la química teòrica, originalment desenvolupats per a examinar molècules petites en fase gas, han evolucionat per a assolir la complexa descripció de sistemes biològics.