28 resultados para Microbial detection
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi elaborat a partir d’una estada al Royal Veterinary and Agricultural University of Denmark entre els mesos de Març a Juny del 2006. S’ha investigat l’efecte dels envasats amb atmosferes modificades (MAP), així com la marinació amb vi tint, sobre l’evolució de la contaminació bacteriològica de carns fosques, dures i seques (DFD). Les carns DFD es troben a les canals d’animals que, abans del sacrifici, han estat exposades a activitats musculars prolongades o estrès. Les carns DFD impliquen importants pèrdues econòmiques degut a la contaminació bacteriològica i als problemes tecnològics relacionats amb la alta capacitat de retenció d’aigua. A més a més, és crític per la indústria investigar la diversitat de la contaminació bacteriana, identificar les espècies bacterianes i controlar-les. Però és difícil degut a la inhabilitat per detectar algunes bactèries en medis coneguts, les interaccions entre elles, la complexitat dels tipus de contaminació com són aigua, terra, femtes i l’ambient. La Polymerasa chain reaction- Denaturating Electrophoresis Gel (PCR-DGEE ) pot sobrepassar aquests problemes reflectint la diversitat microbial i les espècies bacterianes. Els resultants han indicat que la varietat bacteriana de la carn incrementava amb els dies d’envasat independentment del mètode d’envasat, però decreixia significativament amb el tractament de marinació amb vi tint. La DGEE ha mostrat diferències en les espècies trobades, indicant canvis en la contaminació bacteriana i les seves característiques en la carn DFD sota els diferents tractaments. Tot i que la marinació és una bona alternativa i solució a la comercialització de carn DFD , estudis de seqüenciació són necessaris per identificar les diferents tipus de bactèries.
Resumo:
L’objectiu principal del projecte és el de classificar escenes de carretera en funció del contingut de les imatges per així poder fer un desglossament sobre quin tipus de situació tenim en el moment. És important que fixem els paràmetres necessaris en funció de l’escenari en què ens trobem per tal de treure el màxim rendiment possible a cada un dels algoritmes. La seva funcionalitat doncs, ha de ser la d’avís i suport davant els diferents escenaris de conducció. És a dir, el resultat final ha de contenir un algoritme o aplicació capaç de classificar les imatges d’entrada en diferents tipus amb la màxima eficiència espacial i temporal possible. L’algoritme haurà de classificar les imatges en diferents escenaris. Els algoritmes hauran de ser parametritzables i fàcilment manejables per l’usuari. L’eina utilitzada per aconseguir aquests objectius serà el MATLAB amb les toolboxs de visió i xarxes neuronals instal·lades.
Resumo:
This work covers two aspects. First, it generally compares and summarizes the similarities and differences of state of the art feature detector and descriptor and second it presents a novel approach of detecting intestinal content (in particular bubbles) in capsule endoscopy images. Feature detectors and descriptors providing invariance to change of perspective, scale, signal-noise-ratio and lighting conditions are important and interesting topics in current research and the number of possible applications seems to be numberless. After analysing a selection of in the literature presented approaches, this work investigates in their suitability for applications information extraction in capsule endoscopy images. Eventually, a very good performing detector of intestinal content in capsule endoscopy images is presented. A accurate detection of intestinal content is crucial for all kinds of machine learning approaches and other analysis on capsule endoscopy studies because they occlude the field of view of the capsule camera and therefore those frames need to be excluded from analysis. As a so called “byproduct” of this investigation a graphical user interface supported Feature Analysis Tool is presented to execute and compare the discussed feature detectors and descriptor on arbitrary images, with configurable parameters and visualized their output. As well the presented bubble classifier is part of this tool and if a ground truth is available (or can also be generated using this tool) a detailed visualization of the validation result will be performed.
Resumo:
The RT-PCR technique for the detection of apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV) and pear blister canker viroid (PBCV) was evaluated for health control of fruit plants from nurseries. The technique was evaluated in purified RNA and crude extracts and also in phloem collected in autumn and from young spring shoots. The results obtained for phytoplasma detection with ribosomal and non-ribosomal primers are also presented.
Resumo:
L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.
Resumo:
This paper presents an approach to ameliorate the reliability of the correspondence points relating two consecutive images of a sequence. The images are especially difficult to handle, since they have been acquired by a camera looking at the sea floor while carried by an underwater robot. Underwater images are usually difficult to process due to light absorption, changing image radiance and lack of well-defined features. A new approach based on gray-level region matching and selective texture analysis significantly improves the matching reliability
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to thecomposition of the planets crustal materials. If this relationship is true, then inferences regarding the bulkchemistry of the planet might be made from a thorough exospheric study. The most vexing of allunsolved problems is the uncertainty in the source of each component. Historically, it has been believedthat H and He come primarily from the solar wind, while Na and K originate from volatilized materialspartitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms andmolecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulateddesorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its owntemporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly ellipticalorbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperatureand experiences differences of insolation with longitude. We will discuss these processes but focus moreon the expected surface composition and solar wind particle sputtering which releases material like Caand other elements from the surface minerals and discuss the relevance of composition modelling
Resumo:
All of the imputation techniques usually applied for replacing values below thedetection limit in compositional data sets have adverse effects on the variability. In thiswork we propose a modification of the EM algorithm that is applied using the additivelog-ratio transformation. This new strategy is applied to a compositional data set and theresults are compared with the usual imputation techniques
Resumo:
The applicability of the protein phosphatase inhibition assay (PPIA) to the determination of okadaic acid (OA) and its acyl derivatives in shellfish samples has been investigated, using a recombinant PP2A and a commercial one. Mediterranean mussel, wedge clam, Pacific oyster and flat oyster have been chosen as model species. Shellfish matrix loading limits for the PPIA have been established, according to the shellfish species and the enzyme source. A synergistic inhibitory effect has been observed in the presence of OA and shellfish matrix, which has been overcome by the application of a correction factor (0.48). Finally, Mediterranean mussel samples obtained from Rı´a de Arousa during a DSP closure associated to Dinophysis acuminata, determined as positive by the mouse bioassay, have been analysed with the PPIAs. The OA equivalent contents provided by the PPIAs correlate satisfactorily with those obtained by liquid chromatography–tandem mass spectrometry (LC–MS/MS).
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system