20 resultados para Machine learning,Keras,Tensorflow,Data parallelism,Model parallelism,Container,Docker
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
The Powell Basin is a small oceanic basin located at the NE end of the Antarctic Peninsula developed during the Early Miocene and mostly surrounded by the continental crusts of the South Orkney Microcontinent, South Scotia Ridge and Antarctic Peninsula margins. Gravity data from the SCAN 97 cruise obtained with the R/V Hespérides and data from the Global Gravity Grid and Sea Floor Topography (GGSFT) database (Sandwell and Smith, 1997) are used to determine the 3D geometry of the crustal-mantle interface (CMI) by numerical inversion methods. Water layer contribution and sedimentary effects were eliminated from the Free Air anomaly to obtain the total anomaly. Sedimentary effects were obtained from the analysis of existing and new SCAN 97 multichannel seismic profiles (MCS). The regional anomaly was obtained after spectral and filtering processes. The smooth 3D geometry of the crustal mantle interface obtained after inversion of the regional anomaly shows an increase in the thickness of the crust towards the continental margins and a NW-SE oriented axis of symmetry coinciding with the position of an older oceanic spreading axis. This interface shows a moderate uplift towards the western part and depicts two main uplifts to the northern and eastern sectors.
Resumo:
Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions
Resumo:
Este documento refleja el estudio de investigación para la detección de factores que afectan al rendimiento en entornos multicore. Debido a la gran diversidad de arquitecturas multicore se ha definido un marco de trabajo, que consiste en la adopción de una arquitectura específica, un modelo de programación basado en paralelismo de datos, y aplicaciones del tipo Single Program Multiple Data. Una vez definido el marco de trabajo, se han evaluado los factores de rendimiento con especial atención al modelo de programación. Por este motivo, se ha analizado la librería de threads y la API OpenMP para detectar aquellas funciones sensibles de ser sintonizadas al permitir un comportamiento adaptativo de la aplicación al entorno, y que dependiendo de su adecuada utilización han de mejorar el rendimiento de la aplicación.
Resumo:
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Resumo:
We present a machine learning approach to modeling bowing control parametercontours in violin performance. Using accurate sensing techniqueswe obtain relevant timbre-related bowing control parameters such as bowtransversal velocity, bow pressing force, and bow-bridge distance of eachperformed note. Each performed note is represented by a curve parametervector and a number of note classes are defined. The principal componentsof the data represented by the set of curve parameter vectors are obtainedfor each class. Once curve parameter vectors are expressed in the new spacedefined by the principal components, we train a model based on inductivelogic programming, able to predict curve parameter vectors used for renderingbowing controls. We evaluate the prediction results and show the potentialof the model by predicting bowing control parameter contours from anannotated input score.
Resumo:
User retention is a major goal for higher education institutions running their teaching and learning programmes online. This is the first investigation into how the senses of presence and flow, together with perceptions about two central elements of the virtual education environment (didactic resource quality and instructor attitude), facilitate the user¿s intention to continue e-learning. We use data collected from a large sample survey of current users in a pure e-learning environment along with objective data about their performance. The results provide support to the theoretical model. The paper further offers practical suggestions for institutions and instructors who aim to provide effective e-learning experiences.
Resumo:
Introducing bounded rationality in a standard consumption-based asset pricing model with time separable preferences strongly improves empirical performance. Learning causes momentum and mean reversion of returns and thereby excess volatility, persistence of price-dividend ratios, long-horizon return predictability and a risk premium, as in the habit model of Campbell and Cochrane (1999), but for lower risk aversion. This is obtained, even though our learning scheme introduces just one free parameter and we only consider learning schemes that imply small deviations from full rationality. The findings are robust to the learning rule used and other model features. What is key is that agents forecast future stock prices using past information on prices.
Resumo:
El projecte consisteix en la implementació d'una aplicació que generi el codi en ANSI C de maneraautomàtica a partir del diagrama d'una màquina d'estats, més concretament del model generat enformat XMI XML Metada Interchange (XML d'intercanvi de metadades) per l'aplicació gràfica de disseny de programari argoUML0.24, aquesta aplicació és independent de la plataforma, de codi obert i gratuïta.
Mejora diagnóstica de hepatopatías de afectación difusa mediante técnicas de inteligencia artificial
Resumo:
The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
Student guidance is an always desired characteristic in any educational system, butit represents special difficulty if it has to be deployed in an automated way to fulfilsuch needs in a computer supported educational tool. In this paper we explorepossible avenues relying on machine learning techniques, to be included in a nearfuture -in the form of a tutoring navigational tool- in a teleeducation platform -InterMediActor- currently under development. Since no data from that platform isavailable yet, the preliminary experiments presented in this paper are builtinterpreting every subject in the Telecommunications Degree at Universidad CarlosIII de Madrid as an aggregated macro-competence (following the methodologicalconsiderations in InterMediActor), such that marks achieved by students can beused as data for the models, to be replaced in a near future by real data directlymeasured inside InterMediActor. We evaluate the predictability of students qualifications, and we deploy a preventive early detection system -failure alert-, toidentify those students more prone to fail a certain subject such that correctivemeans can be deployed with sufficient anticipation.
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.