24 resultados para MALONYL-COA DECARBOXYLASE

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest treball s’ha analitzat la relació estructura-funció dels enzims CPT1, o Carnitina palmitoïltransferasa 1, que catalitza la reacció de transesterificació dels àcids grassos de cadena llarga a acil-carnitines, per tal que puguin accedir a la matriu mitocondrial i ser oxidats. Aquest enzim es troba estrictament regulat per malonil-CoA, primer intermediari de la síntesi d’àcids grassos, establint-se així una regulació coordinada entre la formació i la degradació de grasses. S’han estudiat els tres isotips de CPT1 descrits fins al moment: CPT1A, CPT1B i CPT1C. Mitjançant l’expressió heteròloga de mutants de CPT1A de rata i CPT1B de porc en el llevat P. pastoris, s’ha estudiat l’efecte sobre la inhibició per malonil-CoA de petits canvis en la seva estructura, per tal de trobar una relació entre la seva funció enzimàtica i la disposició conformacional de la proteïna. Segons els resultats obtinguts, el residu Glu590 de CPT1A de rata estaria impedint la unió de l’inhibidor, mentre que el residu Met593 estaria afavorint aquesta unió. Els estudis amb l’enzim CPT1B de porc demostraren l’existència d’un determinant positiu per la sensibilitat al malonil-CoA en els primers 18 residus de la proteïna, i definiren la posició Glu17 com la responsable de l’alta afinitat a la carnitina i la baixa sensibilitat a la inhibició per malonil-CoA (8). Es clonà i caracteritzà la regió promotora del gen de CPT1C humana, amb la intenció d’analitzar la funcionalitat de putatius elements de resposta identificats in silico. Cap dels elements estudiats resultà ser funcional in vivo. A més, es demostrà que la manca d’activitat catalítica de la proteïna no és deguda a l’extensió C-terminal que presenta respecte els isotips A i B, tot i presentar un alt percentatge d’identitat de seqüència. S’ha amplificat una isoforma humana de CPT1C (Pubmed Acc. Num. AK299866), corresponent a la regió carboxiterminal de la proteïna, que es pretén utilitzar per obtenir el primer cristall de la part soluble d’una proteïna CPT1.     

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carnitine palmitoyltransferase-1 (CPT-1) liver isoform or CPT-1a is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN of rats to induce overexpression and activation of CPT-1a. The VMN-selective activation of CPT-1a induced orexigenic effect, suggesting CPT-1a in the VMN is involved in the central control of feeding. Intracerebroventricular administration of etomoxir, a CPT-1 inhibitor, decreases food intake. Importantly, in the animals with VMN-overexpression of a CPT-1a mutant that antagonizes the CPT-1 inhibition by etomoxir, the anorectic response to etomoxir was attenuated. This suggests that VMN is involved in mediating the anorectic effect of central inhibition of CPT-1a. In contrast, Arc overexpression of the mutant did not alter etomoxir-induced inhibition of food intake, suggesting that Arc CPT-1a does not play significant roles in this anorectic action. Furthermore, in the VMN, CPT-1a appears to act downstream of hypothalamic malonyl-CoA action of feeding. Finally, we show that in the VMN, CPT-1 activity altered in concert with fasting and refeeding states, supporting a physiological role of CPT-1a in mediating the control of feeding. Taking together, CPT-1a in the hypothalamic VMN appears to play an important role in the central control of food intake. VMN-selective modulation of CPT-1a activity may therefore be a promising strategy in controlling food intake and maintaining normal body weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of"emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of"emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste artigo presentamos unha revisión teórica sobre o concepto especializado e a relación que mantén coa variación. Nós defendemos que existe un grao de motivación importante na denominación terminolóxica e que, a través dela, se fan visibles uns trazos semánticos determinados, achegándonos así unha visión particular do concepto. Por último facemos unha proposta de análise da variación terminolóxica consistnete en recompilar as diferentes variantes e analizar o contenido semántico expresado na denominación. Os exemplos foron tirados dun corpus de textos bilingüe francés-galego sobre o marisqueo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results: Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNF¿) values showed overexpression (198%). Conclusion: Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Current methodology of gene expression analysis limits the possibilities of comparison between cells/tissues of organs in which cell size and/or number changes as a consequence of the study (e.g. starvation). A method relating the abundance of specific mRNA copies per cell may allow direct comparison or different organs and/or changing physiological conditions. Methods: With a number of selected genes, we analysed the relationship of the number of bases and the fluorescence recorded at a present level using cDNA standards. A lineal relationship was found between the final number of bases and the length of the transcript. The constants of this equation and those of the relationship between fluorescence and number of bases in cDNA were determined and a general equation linking the length of the transcript and the initial number of copies of mRNA was deduced for a given pre-established fluorescence setting. This allowed the calculation of the concentration of the corresponding mRNAs per g of tissue. The inclusion of tissue RNA and the DNA content per cell, allowed the calculation of the mRNA copies per cell. Results: The application of this procedure to six genes: Arbp, cyclophilin, ChREBP, T4 deiodinase 2, acetyl-CoA carboxylase 1 and IRS-1, in liver and retroperitoneal adipose tissue of food-restricted rats allowed precise measures of their changes irrespective of the shrinking of the tissue, the loss of cells or changes in cell size, factors that deeply complicate the comparison between changing tissue conditions. The percentage results obtained with the present methods were essentially the same obtained with the delta-delta procedure and with individual cDNA standard curve quantitative RT-PCR estimation. Conclusion: The method presented allows the comparison (i.e. as copies of mRNA per cell) between different genes and tissues, establishing the degree of abundance of the different molecular species tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of high hydrostatic pressure (200 MPa) to meat batter just before sausage fermentation and the inoculation of starter culture were studied to improve the safety and quality of traditional Spanish fermented sausages (fuet and chorizo). Higher amounts of biogenic amines were formed in chorizo than in fuet. Without interfering with the ripening performance in terms of acidification, drying and proteolysis, hydrostatic pressure prevented enterobacteria growth but did not affect Gram-positive bacteria significantly. Subsequently, a strong inhibition of diamine (putrescine and cadaverine) accumulation was observed, but that of tyramine was not affected. The inoculated decarboxylase-negative strains, selected from indigenous bacteria of traditional sausages, were resistant to the HHP treatment, being able to lead the fermentation process, prevent enterococci development and significantly reduce enterobacteria counts. In sausages manufactured with either non-pressurized or pressurized meat batter, starter culture was the most protective measure against the accumulation of tyramine and both diamines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C75 is a synthetic compound described as having antitumoral properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identify- ing it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its coenzyme A (CoA) derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential dif- ferent biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that ( )- C75 inhibits FAS activity in vitro and has a cytotoxic effect on tumor cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We supplemented diets with a-tocopheryl acetate (100 mg/kg) and replaced beef tallow (BT) in feeds with increasing doses of n-6- or n-3-rich vegetable fat sources (linseed and sunflower oil), and studied the effects on the fatty acid (FA) composition, the a-tocopherol (aT) content and the oxidative stability of rabbit plasma and liver. These effects were compared with those observed in a previous study in rabbit meat. As in meat, the content of saturated, monounsaturated and trans FA in plasma and liver mainly reflected feed FA profile, except stearic acid in liver, which increased as feeds contained higher doses of vegetable fat, which could be related to an inhibition of the activity of the stearoyl-CoA-desaturase. As linseed oil increased in feeds, the n-6/n-3 FA ratio was decreased in plasma and liver as a result of the incorporation of FA from diets and also, due to the different performance and selectivity of desaturase enzymes. However, an increase in the dose of vegetable fat in feeds led to a significant reduction in the aT content of plasma and liver, which was greater when the fat source was linseed oil. Increasing the dose of vegetable fat in feeds also led to an increase in the susceptibility to oxidation (lipid hydroperoxide (LHP) value) of rabbit plasma, liver and meat and on the thiobarbituric acid (TBA) values of meat. Although the dietary supplementation with a-tocopheryl acetate increased the aT content in plasma and liver, it did not modify significantly their TBA or LHP values. In meat however, both TBA and LHP values were reduced by the dietary supplementation with a-tocopheryl acetate. The plasma aT content reflected the aT content in tissues, and correlated negatively with tissue oxidability. From the studied diets, those containing 1.5% linseed oil plus 1.5% BT and 100 mg of a-tocopheryl acetate/kg most improved the FA composition and the oxidative stability of rabbit tissues.