46 resultados para Hypergraphs and metric spaces.

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove T1 type necessary and sufficient conditions for the boundedness on inhomogeneous Lipschitz spaces of fractional integrals and singular integrals defined on a measure metric space whose measure satisfies a n-dimensional growth. We also show that hypersingular integrals are bounded on these spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the progressive ageing of a worldwide population, negative attitudes towards old age have proliferated thanks to cultural constructs and myths that, for decades, have presented old age as a synonym of decay, deterioration and loss. Moreover, even though every human being knows he/she will age and that ageing is a process that cannot be stopped, it always seems distant, far off in the future and, therefore, remains invisible. In this paper, I aim to analyse the invisibility of old age and its spaces through two contemporary novels and their ageing females protagonists –Maudie Fowler in Doris Lessing ’s The Diary of a Good Neighbour and Erica March in Rose Tremain ’s The Cupboard. Although invisible to the rest of society, these elderly characters succeed in becoming significant in the lives of younger protagonists who, immersed in their active lives, become aware of the need to enlarge our vision of old age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that L2-bounded singular integrals in metric spaces with respect to general measures and kernels converge weakly. This implies a kind of average convergence almost everywhere. For measures with zero density we prove the almost everywhere existence of principal values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the product of a subparacompact C-scattered space and a Lindelöf D-space is D. In addition, we show that every regular locally D-space which is the union of a finite collection of subparacompact spaces and metacompact spaces has the D-property. Also, we extend this result from the class of locally D-spaces to the wider class of D-scattered spaces. All the results are shown in a direct way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a compact pseudo-metric space, we associate to it upper and lower dimensions, depending only on the pseudo-metric. Then we construct a doubling measure for which the measure of a dilated ball is closely related to these dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is linked to some forms of recovery of social and urban spaces fallen into oblivion that are evident in the social transformation of urban space in Bogotá between 1850 and 1880.The following paper presents the preliminary results of the research entitled practices and social uses of water in Bogotá (1850-1888). The text links in first discussions about the understanding of the city as a drawing in space, moving to describe, the growth of the city, integrating its historical, social and cultural structuring

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Per tal de fer front al deteriorament i la destrucció de l’única infraestructura comuna per a joves existent al barri de Haër (M’lomp), l’associació de joves “Les Criquets de Haër” ha dut a terme un projecte de construcció d’un Casal de Joves, el qual pretén fer front no només a la manca d’infraestructures sinó també a la falta de tallers en condicions, de llocs de treball i d’espai agrícola. Amb l’objectiu de construir un centre integrat en el medi i amb capacitat per atendre les necessitats tant dels joves de Haër com d’altres poblacions properes, s’ha optat per realitzar una diagnosi ambiental del terreny on es construirà el complex. La informació obtinguda en aquesta diagnosi ha permès determinar els possibles impactes que la construcció del casal pot suposar per al medi i, a partir d’aquí, elaborar un pla de gestió ambiental dissenyant les mesures correctores més adequades per a la mitigació dels impactes detectats. Les actuacions plantejades en el Pla de gestió ambiental s’han dissenyat tenint en compte el context social i econòmic en el qual es desenvolupen les obres, així com també la predisposició de la població per a dur-les a terme i garantir-ne la continuïtat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.