67 resultados para Hardy Inequalities
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We characterize the weighted Hardy inequalities for monotone functions in Rn +. In dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the result was previously only known for the case p = 1. In fact, our main theorem is proved in the more general setting of partly ordered measure spaces.
Resumo:
We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case.
Resumo:
In this paper well-known summary inequality indexes are used to explore interregional income inequalities in Europe. In particular, we mainly employ Theilspopulation-weighted index because of its appealing properties. Two decomposition analysis are applied. First, regional inequalities are decomposed by regional subgroups (countries). Second, intertemporal inequality changes are separated into income and population changes. The main results can be summarized as follows. First, data confirm a reduction in crossregional inequality during 1982-97. Second, this reduction is basically due to real convergence among countries. Third, currently the greater part of European interregional disparities is within-country by nature, which introduce an important challenge for the European policy. Fourth, inequality changes are due mainly to income variations, population changes playing a minor role.
Resumo:
In this paper we study basic properties of the weighted Hardy space for the unit disc with the weight function satisfying Muckenhoupt's (Aq) condition, and study related approximation problems (expansion, moment and interpolation) with respect to two incomplete systems of holomorphic functions in this space.
Resumo:
In this paper we obtain necessary and sufficient conditions for double trigonometric series to belong to generalized Lorentz spaces, not symmetric in general. Estimates for the norms are given in terms of coefficients.
Resumo:
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
In this paper we study boundedness of the convolution operator in different Lorentz spaces. In particular, we obtain the limit case of the Young-O'Neil inequality in the classical Lorentz spaces. We also investigate the convolution operator in the weighted Lorentz spaces. Finally, norm inequalities for the potential operator are presented.
Resumo:
We obtain upper and lower estimates of the (p; q) norm of the con-volution operator. The upper estimate sharpens the Young-type inequalities due to O'Neil and Stepanov.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper provides evidence on the sources of differences in inequalities in educational scores in European Union member states, by decomposing them into their determining factors. Using PISA data from the 2000 and 2006 waves, the paper shows that inequalities emerge in all countries and in both period, but decreased in Germany, whilst they increased in France and Italy. Decomposition shows that educational inequalities do not only reflect background related inequality, but especially schools’ characteristics. The findings allow policy makers to target areas that may make a contribution in reducing educational inequalities.