76 resultados para Geometric Brownian Motion

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using recent results on the behavior of multiple Wiener-Itô integrals based on Stein's method, we prove Hsu-Robbins and Spitzer's theorems for sequences of correlated random variables related to the increments of the fractional Brownian motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the erratic displacement of spiral waves forced to move in a medium with random spatiotemporal excitability. Analytical work and numerical simulations are performed in relation to a kinematic scheme, assumed to describe the autowave dynamics for weakly excitable systems. Under such an approach, the Brownian character of this motion is proved and the corresponding dispersion coefficient is evaluated. This quantity shows a nontrivial dependence on the temporal and spatial correlation parameters of the external fluctuations. In particular, a resonantlike behavior is neatly evidenced in terms of the noise correlation time for the particular situation of spatially uniform fluctuations. Actually, this case turns out to be, to a large extent, exactly solvable, whereas a pair of dispersion mechanisms are discussed qualitatively and quantitatively to explain the results for the more general scenario of spatiotemporal disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we prove an existence and uniqueness result for the solution of multidimensional stochastic delay differential equations with normal reflection. The equations are driven by a fractional Brownian motion with Hurst parameter H > 1/2. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann¿Stieltjes integral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type of motor are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study analytically a thermal Brownian motor model and calculate exactly the Onsager coefficients. We show how the reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Such a condition implies that the device is built with tight coupling. This explains why Carnot¿s efficiency can be achieved in the limit of infinitely slow velocities. We also prove that the efficiency at maximum power has the maximum possible value, which corresponds to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian refrigerator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process when the solution is forced to stay above a right continuous left-hand limited obstacle. We prove existence and uniqueness of the solution by using a penalization method combined with a monotonic limit theorem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable configurations are generated with positive probability Lundh calls this percolation diffusion. An integral condition for percolation diffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.