Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H 1/2


Autoria(s): Ferrante, Marco; Rovira Escofet, Carles
Contribuinte(s)

Universitat de Barcelona

Data(s)

18/04/2012

Resumo

We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.

Identificador

http://hdl.handle.net/2445/23389

Idioma(s)

eng

Publicador

Bernoulli Society for Mathematical Statistics and Probability

Direitos

(c) ISI/BS, International Statistical Institute, Bernoulli Society, 2006

info:eu-repo/semantics/openAccess

Palavras-Chave #Equacions diferencials estocàstiques #Moviment brownià #Stochastic differential equations #Brownian movements
Tipo

info:eu-repo/semantics/article