55 resultados para Field equilibrium finite elements
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.
Resumo:
Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? This note provides, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens-Venkov Theorem. We consider the cohomology of a space with coefficients in a module, and we compare Noetherianity over the field with p elements, with Noetherianity over the p-adic integers, in the case when the fundamental group is a finite p-group.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Dublin Institute for Advanced Studies, Irlanda, entre setembre i desembre del 2009.En els últims anys s’ha realitzat un important avanç en la modelització tridimensional en magnetotel•lúrica (MT) gracies a l'augment d’algorismes d’inversió tridimensional disponibles. Aquests codis utilitzen diferents formulacions del problema (diferències finites, elements finits o equacions integrals), diverses orientacions del sistema de coordenades i, o bé en el conveni de signe, més o menys, en la dependència temporal. Tanmateix, les impedàncies resultants per a tots els valors d'aquests codis han de ser les mateixes una vegada que es converteixen a un conveni de signe comú i al mateix sistema de coordenades. Per comparar els resultats dels diferents codis hem dissenyat models diferents de resistivitats amb estructures tridimensional incrustades en un subsòl homogeni. Un requisit fonamental d’aquests models és que generin impedàncies amb valors importants en els elements de la diagonal, que no són menyspreables. A diferència dels casos del modelització de dades magnetotel.lúriques unidimensionals i bidimensionals, pel al cas tridimensional aquests elements de les diagonals del tensor d'impedància porten informació sobre l'estructura de la resistivitat. Un dels models de terreny s'utilitza per comparar els diferents algoritmes que és la base per posterior inversió dels diferents codis. Aquesta comparació va ser seguida de la inversió per recuperar el conjunt de dades d'una estructura coneguda.
Resumo:
We show that every finite N-player normal form game possesses a correlated equilibrium with a precise lower bound on the number of outcomes to which it assigns zero probability. In particular, the largest games with a unique fully supported correlated equilibrium are two-player games; moreover, the lower bound grows exponentially in the number of players N.
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
This paper explores the relationships between noncooperative bargaining games and the consistent value for non-transferable utility (NTU) cooperative games. A dynamic approach to the consistent value for NTU games is introduced: the consistent vector field. The main contribution of the paper is to show that the consistent field is intimately related to the concept of subgame perfection for finite horizon noncooperative bargaining games, as the horizon goes to infinity and the cost of delay goes to zero. The solutions of the dynamic system associated to the consistent field characterize the subgame perfect equilibrium payoffs of the noncooperative bargaining games. We show that for transferable utility, hyperplane and pure bargaining games, the dynamics of the consistent fields converge globally to the unique consistent value. However, in the general NTU case, the dynamics of the consistent field can be complex. An example is constructed where the consistent field has cyclic solutions; moreover, the finite horizon subgame perfect equilibria do not approach the consistent value.
Resumo:
The objective of this paper is to re-examine the risk-and effort attitude in the context of strategic dynamic interactions stated as a discrete-time finite-horizon Nash game. The analysis is based on the assumption that players are endogenously risk-and effort-averse. Each player is characterized by distinct risk-and effort-aversion types that are unknown to his opponent. The goal of the game is the optimal risk-and effort-sharing between the players. It generally depends on the individual strategies adopted and, implicitly, on the the players' types or characteristics.
Resumo:
A simple extended finite field nuclear relaxation procedure for calculating vibrational contributions to degenerate four-wave mixing (also known as the intensity-dependent refractive index) is presented. As a by-product one also obtains the static vibrationally averaged linear polarizability, as well as the first and second hyperpolarizability. The methodology is validated by illustrative calculations on the water molecule. Further possible extensions are suggested
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
We study numerically the out-of-equilibrium dynamics of the hypercubic cell spin glass in high dimensionalities. We obtain evidence of aging effects qualitatively similar both to experiments and to simulations of low-dimensional models. This suggests that the Sherrington-Kirkpatrick model as well as other mean-field finite connectivity lattices can be used to study these effects analytically.
Resumo:
Let G be an abstract Kac-Moody group over a finite field and G the closure of the image of G in the automorphism group of its positive building. We show that if the Dynkin diagram associated to G is irreducible and neither of spherical nor of affine type, then the contraction groups of elements in G which are not topologically periodic are not closed. (In those groups there always exist elements which are not topologically periodic.)