116 resultados para FINITE MAIN CRACK

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically finite group containing a normal subgroup of infinite index with given finiteness properties and infinite Abelian quotient, and produces a pair of geometrically finite groups whose intersection is isomorphic to the normal subgroup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the relationships between noncooperative bargaining games and the consistent value for non-transferable utility (NTU) cooperative games. A dynamic approach to the consistent value for NTU games is introduced: the consistent vector field. The main contribution of the paper is to show that the consistent field is intimately related to the concept of subgame perfection for finite horizon noncooperative bargaining games, as the horizon goes to infinity and the cost of delay goes to zero. The solutions of the dynamic system associated to the consistent field characterize the subgame perfect equilibrium payoffs of the noncooperative bargaining games. We show that for transferable utility, hyperplane and pure bargaining games, the dynamics of the consistent fields converge globally to the unique consistent value. However, in the general NTU case, the dynamics of the consistent field can be complex. An example is constructed where the consistent field has cyclic solutions; moreover, the finite horizon subgame perfect equilibria do not approach the consistent value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological economics is a recently developed field, which sees the economy as a subsystem of a larger finite global ecosystem. Ecological economists question the sustainability of the economy because of its environmental impacts and its material and energy requirements, and also because of the growth of population. Attempts at assigning money values to environmental services and losses, and attempts at correcting macroeconomic accounting, are part of ecological economics, but its main thrust is rather in developing physical indicators and indexes of sustainability. Ecological economists also work on the relations between property rights and resource management, they model the interactions between the economy and the environment, they study ecological distribution conflicts, they use management tools such as integrated environmental assessment and multi-criteria decision aids, and they propose new instruments of environmental policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To allow society to treat unequal alternatives distinctly we propose a natural extension of Approval Voting by relaxing the assumption of neutrality. According to this extension, every alternative receives ex-ante a non-negative and finite weight. These weights may differ across alternatives. Given the voting decisions of every individual (individuals are allowed to vote for, or approve of, as many alternatives as they wish to), society elects all alternatives for which the product of total number of votes times exogenous weight is maximal. Our main result is an axiomatic characterization of this voting procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How did the leading capital market start to attract international bullion? Why did London become the main money market? Monetary regulations, including the charges for minting money and the restrictions on bullion exchange, have played the key role in defining the direction of the flow of international bullion. Countries that abolished minting charges and permitted the free movement of bullion were able to attract international bullion, and countries that applied minting taxes suffered an outflow of bullion. In these cases monetary authorities tried to limit bullion movement through prohibitions on domestic bullion exchange at a free price, and tariffs and quantitative restrictions on bullion exports. The paper illustrates the logic of international monetary flow in the 18th century, using empirical evidence for England, France and Spain. The first section defines and measures monetary policy, and the second section introduces minting charges into the arbitrage equation in order to explain the logic of bullion flow between the pairs of nations England-France, England-Spain and France-Spain. The conclusion emphasises the importance of monetary policy in the creation of leading money markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a l’ Imperial College London, entre juliol i novembre de 2006. En aquest treball s’ha investigat la geometria més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. L’objectiu és assegurar la propagació de l’esquerda sense que la proveta falli abans per cap altre mecanisme de dany per tal de permetre la caracterització experimental de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. Amb aquesta fi, s’ha dut a terme l’anàlisi paramètrica de diferents tipus de provetes mitjançant el mètode dels elements finits (FE) combinat amb la virtual crack closure technique (VCCT). Les geometries de les provetes analitzades corresponen a la proveta de l’assaig compact tension (CT) i diferents variacions com la extended compact tension (ECT), la proveta widened compact tension (WCT), tapered compact tension (TCT) i doubly-tapered compact tension (2TCT). Com a resultat d’aquestes anàlisis s’han derivat diferents conclusions per obtenir la geometria de proveta més apropiada per a la caracterització de la tenacitat a fractura intralaminar de materials compòsits laminats amb teixit. A més, també s’han dut a terme una sèrie d’assaigs experimentals per tal de validar els resultats de les anàlisis paramètriques. La concordança trobada entre els resultats numèrics i experimentals és bona tot i la presència d’efectes no previstos durant els assaigs experimentals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objectiu de la recerca és definir un marc teòric i metodològic per a l’estudi del canvi tecnològic en Arqueologia. Aquest model posa èmfasi en caracteritzar els compromisos que configuren una tecnologia i avaluar-los en funció dels factors de situació —tècnics, econòmics, polítics, socials i ideològics. S’ha aplicat aquest model a un cas d’estudi concret: la producció d’àmfores romanes durant el canvi d’Era en la província Tarraconensis. L’estudi tecnològic dels envasos s’ha realitzat mitjançant diverses tècniques analítiques: Fluorescència de raigs X (FRX), Difracció de raigs X (DRX), Microscòpia òptica (MO) i Microscòpia electrònica de rastreig (MER). Les dades obtingudes permeten, a més, establir els grups de referència per a cada centre productor d’àmfores i, així, identificar la provinença dels individus recuperats en els centres consumidors. Donat que les àmfores en estudi són artefactes dissenyats específicament per a ser estibats en una nau i servir com a envàs de transport, l’estudi inclou la caracterització de les propietats mecàniques de resistència a la fractura i de tenacitat. En aquest sentit, i per primera vegada, s’ha aplicat l’Anàlisi d’Elements Finits (AEF) per a conèixer el comportament dels diferents dissenys d’àmfora en ésser sotmesos a diverses forces d’ús. L’AEF permet simular per ordinador les activitats en què les àmfores haurien participat durant el seu ús i avaluar-ne el seu comportament tècnic. Els resultats mostren una gran adequació entre les formulacions teòriques i el programa analític implementat per a aquest estudi. Respecte el cas d’estudi, els resultats mostren una gran variabilitat en les eleccions tecnològiques preses pels ceramistes de diferents tallers, però també al llarg del període de funcionament d’un mateix taller. L’aplicació del model ha permès proposar una explicació al canvi de disseny de les àmfores romanes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Department de Matemàtica Aplicada de la Montanuniversität Leoben, Àustria, entre agost i desembre del 2006. L’ objectiu ha estat fer recerca sobre digrafs infinits amb dos finals, connexos i localment finits, i, en particular, en digrafs amb dos finals i altament arc-transitius. Malnic, Marusic et al. van introduir un nou tipus de relació d’equivalència en els vèrtexs d’un dígraf, anomenades relacions d’assolibilitat, que generalitzen i tenen el seu origen en un problema posat per Cameron et al., on les classes de la relació d’equivalència eren vèrtexs que pertanyien a un camí alternat del dígraf . Malnic et al. en el mencionat article van establir connexions ben estretes entre aquestes relacions d’assolibilitat i l'estructura de finals i creixement dels digrafs localment finits i transitius. En aquest treball, s’ha caracteritzat per complet aquestes relacions d’assolibitat en el cas de dígrafs localment finits i transitius amb exactament dos finals, en termes de la descomposició en números primers del número de línies que genera el digraf amb dos finals. A més, es nega la Conjectura 1 sostinguda per Seifter que afirmava que un digraf connex localment finit amb més d’un final era necessàriament o be 0-, 1- o altament arc-transitiu. Seifer havia donat una solució parcial a la conjectura pel cas de digrafs regulars amb grau primer que tinguin un conjunt de tall connex. En aquest treball, es descriu una família infinita de dígrafs regulars de grau dos, amb dos finals, exactament 2-arc transitius i no 3-arc transitius. Així, es nega la Conjectura de Seifter en el cas general, fins i tot per grau primer. Tot i així, la solució parcial donada per Seifter en el seu article és en cert sentit la millor possible i l'existència un conjunt de tall connex essencial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.