69 resultados para Empirical Bayes Methods
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We compare a set of empirical Bayes and composite estimators of the population means of the districts (small areas) of a country, and show that the natural modelling strategy of searching for a well fitting empirical Bayes model and using it for estimation of the area-level means can be inefficient.
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.
Resumo:
When preparing an article on image restoration in astronomy, it is obvious that some topics have to be dropped to keep the work at reasonable length. We have decided to concentrate on image and noise models and on the algorithms to find the restoration. Topics like parameter estimation and stopping rules are also commented on. We start by describing the Bayesian paradigm and then proceed to study the noise and blur models used by the astronomical community. Then the prior models used to restore astronomical images are examined. We describe the algorithms used to find the restoration for the most common combinations of degradation and image models. Then we comment on important issues such as acceleration of algorithms, stopping rules, and parameter estimation. We also comment on the huge amount of information available to, and made available by, the astronomical community.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
This paper surveys recent evidence on the determinants of (national and/or foreign) industrial location. We find that the basic analytical framework has remained essentially unaltered since the early contributions of the early 1980's while, in contrast, there have been significant advances in the quality of the data and, to a lesser extent, the econometric modelling. We also identify certain determinants (neoclassical and institutional factors) that tend to provide largely consistent results across the reviewed studies. In light of this evidence, we finally suggest future lines of research.
Resumo:
The paper contrasts empirically the results of alternative methods for estimating thevalue and the depreciation of mineral resources. The historical data of Mexico andVenezuela, covering the period 1920s-1980s, is used to contrast the results of severalmethods. These are the present value, the net price method, the user cost method andthe imputed income method. The paper establishes that the net price and the user costare not competing methods as such, but alternative adjustments to different scenariosof closed and open economies. The results prove that the biases of the methods, ascommonly described in the theoretical literature, only hold under the most restrictedscenario of constant rents over time. It is argued that the difference between what isexpected to happen and what actually did happen is for the most part due to a missingvariable, namely technological change. This is an important caveat to therecommendations made based on these models.
Resumo:
L'Anàlisi de la supervivència s'utilitza en diferents camps per analitzar el temps transcorregut entre dos esdeveniments. El que distingeix l'anàlisi de la supervivència d'altres àrees de l'estadística és que les dades normalment estan censurades. La censura en un interval apareix quan l'esdeveniment final d'interès no és directament observable i només se sap que el temps de fallada està en un interval concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps final estan censurats en un interval. Aquesta situació s'anomena doble censura. En aquest article donem una descripció formal d'un mètode bayesà paramètric per a l'anàlisi de dades censurades en un interval i dades doblement censurades així com unes indicacions clares de la seva utilització o pràctica. La metodologia proposada s'ilustra amb dades d'una cohort de pacients hemofílics que es varen infectar amb el virus VIH a principis dels anys 1980's.
Resumo:
This paper examines the antecedents and innovation consequences of the methods firms adopt in organizing their search strategies. From a theoretical perspective, organizational search is described using a typology that shows how firms implement exploration and exploitation search activities that span their organizational boundaries. This typology includes three models of implementation: ambidextrous, specialized, and diversified implementation. From an empirical perspective, the paper examines the performance consequences when applying these models, and compares their capacity to produce complementarities. Additionally, since firms' choices in matters of organizational search are viewed as endogenous variables, the paper examines the drivers affecting them and identifies the importance of firms' absorptive capacity and diversified technological opportunities in determining these choices. The empirical design of the paper draws on new data for manufacturing firms in Spain, surveyed between 2003 and 2006.
Resumo:
A study of how the machine learning technique, known as gentleboost, could improve different digital watermarking methods such as LSB, DWT, DCT2 and Histogram shifting.
Resumo:
Two main approaches are commonly used to empirically evaluate linear factor pricingmodels: regression and SDF methods, with centred and uncentred versions of the latter.We show that unlike standard two-step or iterated GMM procedures, single-step estimatorssuch as continuously updated GMM yield numerically identical values for prices of risk,pricing errors, Jensen s alphas and overidentifying restrictions tests irrespective of the modelvalidity. Therefore, there is arguably a single approach regardless of the factors being tradedor not, or the use of excess or gross returns. We illustrate our results by revisiting Lustigand Verdelhan s (2007) empirical analysis of currency returns.
Resumo:
This chapter highlights the problems that structural methods and SVAR approaches have when estimating DSGE models and examining their ability to capture important features of the data. We show that structural methods are subject to severe identification problems due, in large part, to the nature of DSGE models. The problems can be patched up in a number of ways but solved only if DSGEs are completely reparametrized or respecified. The potential misspecification of the structural relationships give Bayesian methods an hedge over classical ones in structural estimation. SVAR approaches may face invertibility problems but simple diagnostics can help to detect and remedy these problems. A pragmatic empirical approach ought to use the flexibility of SVARs against potential misspecificationof the structural relationships but must firmly tie SVARs to the class of DSGE models which could have have generated the data.
Resumo:
We obtain minimax lower and upper bounds for the expected distortionredundancy of empirically designed vector quantizers. We show that the meansquared distortion of a vector quantizer designed from $n$ i.i.d. datapoints using any design algorithm is at least $\Omega (n^{-1/2})$ awayfrom the optimal distortion for some distribution on a bounded subset of${\cal R}^d$. Together with existing upper bounds this result shows thatthe minimax distortion redundancy for empirical quantizer design, as afunction of the size of the training data, is asymptotically on the orderof $n^{1/2}$. We also derive a new upper bound for the performance of theempirically optimal quantizer.
Resumo:
Given $n$ independent replicates of a jointly distributed pair $(X,Y)\in {\cal R}^d \times {\cal R}$, we wish to select from a fixed sequence of model classes ${\cal F}_1, {\cal F}_2, \ldots$ a deterministic prediction rule $f: {\cal R}^d \to {\cal R}$ whose risk is small. We investigate the possibility of empirically assessingthe {\em complexity} of each model class, that is, the actual difficulty of the estimation problem within each class. The estimated complexities are in turn used to define an adaptive model selection procedure, which is based on complexity penalized empirical risk.The available data are divided into two parts. The first is used to form an empirical cover of each model class, and the second is used to select a candidate rule from each cover based on empirical risk. The covering radii are determined empirically to optimize a tight upper bound on the estimation error. An estimate is chosen from the list of candidates in order to minimize the sum of class complexity and empirical risk. A distinguishing feature of the approach is that the complexity of each model class is assessed empirically, based on the size of its empirical cover.Finite sample performance bounds are established for the estimates, and these bounds are applied to several non-parametric estimation problems. The estimates are shown to achieve a favorable tradeoff between approximation and estimation error, and to perform as well as if the distribution-dependent complexities of the model classes were known beforehand. In addition, it is shown that the estimate can be consistent,and even possess near optimal rates of convergence, when each model class has an infinite VC or pseudo dimension.For regression estimation with squared loss we modify our estimate to achieve a faster rate of convergence.
Resumo:
The results of the examinations taken by graduated high school studentswho want to enrol at a Catalan university are here studied. To do so,the authors address several issues related to the equity of the system:reliability of grading, difficulty and discrimination power of the exams.The general emphasis is put upon the concurrent research and empiricalevidence about the properties of the examination items and scores. Aftera discussion about the limitations of the exams' format and appropriatenessof the instruments used in the study, the article concludes with somesuggestions to improve such examinations.