51 resultados para Classification criterion

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'objectiu d'aquest treball és establir un criteri de classificació dels projectes informàtics, trobar-ne els diferents tipus i desenvolupar les estructures de descomposició del treball (EDT) per a cada tipus. Aquest criteri s'orientarà a fixar les màximes diferències entre tipus. Una vegada se'ls hagi localitzat, s'establiran les EDT corresponents a cada tipus, centrant el desenvolupament de cada estructura a reflectir les diferències entre les distintes descomposicions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Wolfram syndrome is a degenerative, recessive rare disease with an onset in childhood. It is caused by mutations in WFS1 or CISD2 genes. More than 200 different variations in WFS1 have been described in patients with Wolfram syndrome, which complicates the establishment of clear genotype-phenotype correlation. The purpose of this study was to elucidate the role of WFS1 mutations and update the natural history of the disease. Methods: This study analyzed clinical and genetic data of 412 patients with Wolfram syndrome published in the last 15 years. Results: (i) 15% of published patients do not fulfill the current ­inclusion criterion; (ii) genotypic prevalence differences may exist among countries; (iii) diabetes mellitus and optic atrophy might not be the first two clinical features in some patients; (iv) mutations are nonuniformly distributed in WFS1; (v) age at onset of diabetes mellitus, hearing defects, and diabetes insipidus may depend on the patient"s genotypic class; and (vi) disease progression rate might depend on genotypic class. Conclusion: New genotype-phenotype correlations were established, disease progression rate for the general population and for the genotypic classes has been calculated, and new diagnostic criteria have been proposed. The conclusions raised could be important for patient management and counseling as well as for the development of treatments for Wolfram syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es va realitzar el II Workshop en Tomografia Computeritzada (TC) a Monells. El primer dia es va dedicar íntegrament a la utilització del TC en temes de classificació de canals porcines, i el segon dia es va obrir a altres aplicacions del TC, ja sigui en animals vius o en diferents aspectes de qualitat de la carn o els productes carnis. Al workshop hi van assistir 45 persones de 12 països de la UE. The II workshop on the use of Computed Tomography (CT) in pig carcass classification. Other CT applications: live animals and meat technology was held in Monells. The first day it was dedicated to the use of CT in pig carcass classification. The segond day it was open to otehr CT applications, in live animals or in meat and meat products quality. There were 45 assistants of 12 EU countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lean meat percentage (LMP) is the criterion for carcass classification and it must be measured on line objectively. The aim of this work was to compare the error of the prediction (RMSEP) of the LMP measured with the following different devices: Fat-O-Meat’er (FOM), UltraFOM (UFOM), AUTOFOM and -VCS2000. For this reason the same 99 carcasses were measured using all 4 apparatus and dissected according to the European Reference Method. Moreover a subsample of the carcasses (n=77) were fully scanned with a X-ray Computed Tomography equipment (CT). The RMSEP calculated with cross validation leave-one-out was lower for FOM and AUTOFOM (1.8% and 1.9%, respectively) and higher for UFOM and VCS2000 (2.3% for both devices). The error obtained with CT was the lowest (0.96%) in accordance with previous results, but CT cannot be used on line. It can be concluded that FOM and AUTOFOM presented better accuracy than UFOM and VCS2000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a criterion for the irreducibility of an integral group representation p over the fraction field of a noetherian domain R in terms of suitably defined reductions of p at prime ideals of R. As applications, we give irreducibility results for universal deformations of residual representations, with a special attention to universal deformations of residual Galois representations associated with modular forms of weight at least 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper we study the generalization where countable is replaced by uncountable. We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. We also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques