211 resultados para Chaotic Dynamics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper analyzes the role of financial development as a source of endogenous instability in small open economies. By assuming that firms face credit constraints, our model displays a complex dynamic behavior for intermediate values of the parameter representing the level of financial development of the economy. The basic implication of our model is that economies experiencing a process of financial development are more unstable than both very underdeveloped and very developed economies. Our instability concept means that small shocks have a persistent effect on the long run behavior of the model and also that economies can exhibit cycles with a very high period or even chaotic dynamic patterns.
Resumo:
Considering teams as complex adaptive systems (CAS) this study deals with changes in team effectiveness over time in a specific context: professional basketball. The sample comprised 23 basketball teams whose outcomes were analysed over a 12-year period according to two objective measures. The results reveal that all the teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship was also found between teams showing low-dimensional chaotic dynamics and better outcomes, supporting the idea of healthy variability in organizational behaviour. The stability of the squad was likewise found to influence team outcomes, although it was not associated with the chaotic dynamics in team effectiveness. It is concluded that studying teams as CAS enables fluctuations in team effectiveness to be explained, and that the techniques derived from nonlinear dynamical systems, developed specifically for the study of CAS, are useful for this purpose.
Resumo:
Considering teams as complex adaptive systems (CAS) this study deals with changes in team effectiveness over time in a specific context: professional basketball. The sample comprised 23 basketball teams whose outcomes were analysed over a 12-year period according to two objective measures. The results reveal that all the teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship was also found between teams showing low-dimensional chaotic dynamics and better outcomes, supporting the idea of healthy variability in organizational behaviour. The stability of the squad was likewise found to influence team outcomes, although it was not associated with the chaotic dynamics in team effectiveness. It is concluded that studying teams as CAS enables fluctuations in team effectiveness to be explained, and that the techniques derived from nonlinear dynamical systems, developed specifically for the study of CAS, are useful for this purpose.
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.
Resumo:
This study considers the complex dynamics of work motivation. Forty-eight employees completed a work-motivation diary several times per day over a period of four weeks. The obtained time series were analysed using different methodologies derived from chaos theory (i.e. recurrence plots, Lyapunov exponents, correlation dimension and surrogate data). Results showed chaotic dynamics in 75% of cases. The findings confirm the universality of chaotic behavior within human behavior, challenge some of the underlying assumptions on which work motivation theories are based, and suggest that chaos theory may offer useful and relevant information on how this process is managed within organizations.
Resumo:
We study dynamics of domain walls in pattern forming systems that are externally forced by a moving space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls. The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic wave trains occurs.
Resumo:
The aims of this study are to consider the experience of flow from a nonlinear dynamics perspective. The processes and temporal nature of intrinsic motivation and flow, would suggest that flow experiences fluctuate over time in a dynamical fashion. Thus it can be argued that the potential for chaos is strong. The sample was composed of 20 employees (both full and part time) recruited from a number of different organizations and work backgrounds. The Experience Sampling Method (ESM) was used for data collection. Once obtained the temporal series, they were subjected to various analyses proper to the com- plexity theory (Visual Recurrence Analysis and Surrogate Data Analysis). Results showed that in 80% of the cases, flow presented a chaotic dynamic, in that, flow experiences delineated a complex dynamic whose patterns of change were not easy to predict. Implications of the study, its limitations and future research are discussed.
Resumo:
Chaotic systems, when used to drive copies of themselves (or parts of themselves) may induce interesting behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may show amplification (reduction), or displacement of the attractor. It is shown how the behavior to be obtained is implied by the symmetries involved. Two explicit examples are studied to show how these phenomena manifest themselves under perfect and imperfect coupling.
Resumo:
This paper contains a study of the synchronization by homogeneous nonlinear driving of systems that are symmetric in phase space. The main consequence of this symmetry is the ability of the response to synchronize in more than just one way to the driving systems. These different forms of synchronization are to be understood as generalized synchronization states in which the motions of drive and response are in complete correlation, but the phase space distance between them does not converge to zero. In this case the synchronization phenomenon becomes enriched because there is multistability. As a consequence, there appear multiple basins of attraction and special responses to external noise. It is shown, by means of a computer simulation of various nonlinear systems, that: (i) the decay to the generalized synchronization states is exponential, (ii) the basins of attraction are symmetric, usually complicated, frequently fractal, and robust under the changes in the parameters, and (iii) the effect of external noise is to weaken the synchronization, and in some cases to produce jumps between the various synchronization states available
Resumo:
Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].
Resumo:
A simple chaotic flow is presented, which when driven by an identical copy of itself, for certain initial conditions, is able to display generalized synchronization instead of identical synchronization. Being that the drive and the response are observed in exactly the same coordinate system, generalized synchronization is demonstrated by means of the auxiliary system approach and by the conditional Lyapunov spectrum. This is interpreted in terms of changes in the structure of the system stationary points, caused by the coupling, which modify its global behavior.
Resumo:
Much of the research on industry dynamics focuses on the interdependence between the sectorial rates of entry and exit. This paper argues that the size of firms and the reaction-adjustment period are important conditions missed in this literature. I illustrate the effects of this omission using data from the Spanish manufacturing industries between 1994 and 2001. Estimates from systems of equations models provide evidence of a conical revolving door phenomenon and of partial adjustments in the replacement-displacement of large firms. KEYWORDS: aggregation, industry dynamics, panel data, symmetry, simultaneity. JEL CLASSIFICATION: C33, C52, L60, L11
Resumo:
This paper takes a new look at the long-run dynamics of inflation and unemployment in response to permanent changes in the growth rate of the money supply. We examine the Phillips curve from the perspective of what we call "frictional growth", i.e. the interaction between money growth and nominal frictions. After presenting theoretical models of this phenomenon, we construct an empirical model of the Spanish economy and, in this context, we evaluate the long-run inflation-unemployment trade for Spain and examine how recent policy changes have afected it.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.