43 resultados para Ant-based algorithm

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Wiener system is a linear time-invariant filter, followed by an invertible nonlinear distortion. Assuming that the input signal is an independent and identically distributed (iid) sequence, we propose an algorithm for estimating the input signal only by observing the output of the Wiener system. The algorithm is based on minimizing the mutual information of the output samples, by means of a steepest descent gradient approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, two probabilistic adaptive algorithmsfor jointly detecting active users in a DS-CDMA system arereported. The first one, which is based on the theory of hiddenMarkov models (HMM’s) and the Baum–Wech (BW) algorithm,is proposed within the CDMA scenario and compared withthe second one, which is a previously developed Viterbi-basedalgorithm. Both techniques are completely blind in the sense thatno knowledge of the signatures, channel state information, ortraining sequences is required for any user. Once convergencehas been achieved, an estimate of the signature of each userconvolved with its physical channel response (CR) and estimateddata sequences are provided. This CR estimate can be used toswitch to any decision-directed (DD) adaptation scheme. Performanceof the algorithms is verified via simulations as well as onexperimental data obtained in an underwater acoustics (UWA)environment. In both cases, performance is found to be highlysatisfactory, showing the near–far resistance of the analyzed algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling ecological niches of species is a promising approach for predicting the geographic potential of invasive species in new environments. Argentine ants (Linepithema humile) rank among the most successful invasive species: native to South America, they have invaded broad areas worldwide. Despite their widespread success, little is known about what makes an area susceptible - or not - to invasion. Here, we use a genetic algorithm approach to ecological niche modeling based on high-resolution remote-sensing data to examine the roles of niche similarity and difference in predicting invasions by this species. Our comparisons support a picture of general conservatism of the species' ecological characteristics, in spite of distinct geographic and community contexts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les invasions biològiques representen una greu amenaça per al funcionament dels ecosistemes i per a la preservació de la biodiversitat.. La formiga argentina (Linepithema humile) està considerada com una de les 100 espècies invasores més nocives. Prospera en extenses àrees de clima mediterrani de regions temperades i subtropicals de tots els continents amb l’excepció de l’Antàrtida. És una formiga dominant i una competidora agressiva que mitjançant múltiples mecanismes, des de predació directe a competència, produeix efectes negatius en una amplia varietat de taxons, principalment formigues i altres artròpodes, però també vertebrats. S’ha investigat, per primera vegada, els efectes de la formiga invasiva sobre les comunitats d’artròpodes de fullatge i com aquestes pertorbacions es transmeten en la xarxa tròfica del bosc esclerofil•le mediterrani. En les suredes estudiades la invasió de formiga argentina és causa directe de la extinció local de la gran majoria de poblacions de formigues natives. En el període mostrejat s’han constatat també impactes negatius en la diversitat i en l’abundància d’artròpodes natius en les capçades dels arbres, particularment d’erugues. Una avaluació preliminar basada únicament amb dades del 2005 indica que, reduint la disponibilitat d’erugues, la formiga argentina empobreix l’hàbitat reproductiu de la mallerenga blava (Parus caeruleus). La mallerenga blava basa la dieta insectívora estricte de la seva pollada fonamentalment en les erugues. No hem detectat impactes en l’èxit reproductiu de les mallerengues blaves en zones envaïdes. Els polls crescuts en àrees envaïdes assoleixen una condició física similar als de les zones no envaïdes, però la reducció en la disponibilitat d’erugues associada a la invasió de formiga argentina es tradueix en un creixement descompassat i en una menor mida estructural del polls volanders. Així, les pertorbacions en la comunitat d’artròpodes associades a la invasió de la formiga argentina promouen efectes bottom-up que acaben perjudicant el desenvolupament dels polls de mallerenga blava.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26º C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparentlyindependent of environmental temperature. At 32º C no eggs survived, while at 18º C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs