18 resultados para AUTONOMOUS CONTROL

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signalng sources share the same receptor and provides the tools for their characterization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquesta tesi explora la possibilitat de fer servir enllaços inductius per a una aplicació de l’automòbil on el cablejat entre la centraleta (ECU) i els sensors o detectors és difícil o impossible. S’han proposat dos mètodes: 1) el monitoratge de sensors commutats (dos possibles estats) via acoblament inductiu i 2) la transmissió mitjançant el mateix principi físic de la potència necessària per alimentar els sensors autònoms remots. La detecció d'ocupació i del cinturó de seguretat per a seients desmuntables pot ser implementada amb sistemes sense fils passius basats en circuits ressonants de tipus LC on l'estat dels sensors determina el valor del condensador i, per tant, la freqüència de ressonància. Els canvis en la freqüència són detectats per una bobina situada en el terra del vehicle. S’ha conseguit provar el sistema en un marge entre 0.5 cm i 3 cm. Els experiments s’han dut a terme fent servir un analitzador d’impedàncies connectat a una bobina primària i sensors comercials connectats a un circuit remot. La segona proposta consisteix en transmetre remotament la potència des d’una bobina situada en el terra del vehicle cap a un dispositiu autònom situat en el seient. Aquest dispositiu monitorarà l'estat dels detectors (d'ocupació i de cinturó) i transmetrà les dades mitjançant un transceptor comercial de radiofreqüència o pel mateix enllaç inductiu. S’han avaluat les bobines necessàries per a una freqüència de treball inferior a 150 kHz i s’ha estudiat quin és el regulador de tensió més apropiat per tal d’aconseguir una eficiència global màxima. Quatre tipus de reguladors de tensió s’han analitzat i comparat des del punt de vista de l’eficiència de potència. Els reguladors de tensió de tipus lineal shunt proporcionen una eficiència de potència millor que les altres alternatives, els lineals sèrie i els commutats buck o boost. Les eficiències aconseguides han estat al voltant del 40%, 25% i 10% per les bobines a distàncies 1cm, 1.5cm, i 2cm. Les proves experimentals han mostrat que els sensors autònoms han estat correctament alimentats fins a distàncies de 2.5cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desarrollo de software para el control de calidad y la generación automatizada de informes técnicos sobre ficheros de estado generados por AUV (vehículos autónomos submarinos).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and implementation of a mission control system (MCS) for an autonomous underwater vehicle (AUV) based on Petri nets. In the proposed approach the Petri nets are used to specify as well as to execute the desired autonomous vehicle mission. The mission is easily described using an imperative programming language called mission control language (MCL) that formally describes the mission execution thread. A mission control language compiler (MCL-C) able to automatically translate the MCL into a Petri net is described and a real-time Petri net player that allows to execute the resulting Petri net onboard an AUV are also presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the core functions of an artificial intelligence (AI) for controlling a debris collector robot are designed and implemented. Using the robot operating system (ROS) as the base of this work a multi-agent system is built with abilities for task planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUM Masjoan és una masia del segle XII on resideix la família Masferrer des del 1710. Actualment a Masjoan l’activitat principal és el cultiu i venta de plantes ornamentals, i l’explotació forestal per obtenir fusta. Pel que fa a l’aigua, tant per a la realització de l’activitat professional com per al subministrament de la casa, aquesta prové de mines d’aigua natural situades en la finca. L’objectiu d’aquest TFC ha estat dissenyar un sistema autònom per automatitzar el procés de derivació de l’aigua procedent d’una mina, i d’aquesta manera aprofitar millor els recursos naturals dels que és disposa. El desenvolupament d’aquest sistema, comprèn la selecció i configuració de sensors i actuadors, el disseny del circuit amb la realització de la placa, el disseny del sistema d’alimentació autònom, el software que controla el sistema, i dimensionar la resta d’elements de la instal•lació. Tot el sistema està controlat per un microcontrolador PIC16F876 i alimentat per un mòdul solar de 4W. En el disseny s’ha procurat, sobredimencionar les diferents etapes per possibles ampliacions o modificacions del sistema i que el circuit procures optimitzar el consum d’energia. Com a conclusions cal dir que s’han assolit els objectius proposats amb èxit. S’ha aconseguit un disseny funcional i estable que actualment es troba en funcionament.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields