19 resultados para ALGINATE SCAFFOLDS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Grup de Recerca en Enginyeria de Producte, Procés i Producció de la Universitat de Girona té en les seves instal•lacions una RepRap model Prusa Mendel. Un dels seus àmbits d’investigació és el sector mèdic. Una de les aplicacions més innovadores de les tecnologies additives, emmarcada dins del camp mèdic, és la fabricació de scaffolds. En la medicina regenerativa, els scaffolds s’utilitzen com estructures biodegradables implantables que serveixen de base per a la correcte reproducció de teixit a partir de cèl•lules no diferenciades. L’objecte del projecte és aconseguir fabricar scaffolds amb la Reprap. Per tald’assolir aquest objectiu final caldran molts passos previs. En el moment que s’inicia elpresent projecte la RepRap té tots els seus components muntats, el cablejat instal•lat i el firmware inicial a la placa. Així, en primer lloc cal obtenir una correcta comunicació entre la màquina i l’ordinador a través del qual es podrà accedir a la placa per tal de realizar ajustaments. Una vegada la màquina obeeixi les ordres de moviment en la magnitud i la direcció desitjada serà el moment d’ajustar els paràmetres propis de la impressió. Aquests varien en funció de l’extrusor i el material a utilitzar. En aquest punt es passarà a dissenyar i fabricar diferents tipus de scaffolds variant les estratègies i les geometries. Aquests dissenys seran testats mecànicament a compressió. També seran analitzats geomètricament i se’n determinarà la porositat. Finalment, a partir de l’anàlisi dels resultats s’intentarà trobar una relació entre les diferents formes geomètriques, les porositats i la resistència
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
This article explores how to enrich scaffolding processes among university students using specific Computer Supported Collaborative Learning –CSCL- software. A longitudinal case study was designed, in which eighteen students participated in a twelve-month learning project. During this period the students followed an instructional process, using the CSCL software to support and improve the students’ interaction processes, in particular the processes of giving and receiving assistance. Our research analyzed the evolution of the quality of the students’ interaction processes and the students’ learning results. The effects of the students’ participation in the CSCL environment have been described in terms of their development of affective, cognitive and metacognitive learning processes. Our results showed that the specific activities that students performed while working with the CSCL system triggered specific learning processes, which had a positive incidence on their learning results.
Resumo:
Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.
Resumo:
En aquest treball es pretén obtenir material porós de PDLLA, amb ús potencial com a bastida en enginyeria tissular, mitjançant l’ús de freó R-134a com a fluid escumant. Per aquest motiu, s’ha realitzat un estudi on es valoren diferents variables com la temperatura de procés, la pressió de treball i l’ús de N2 en la despressurització que poden modificar la microestructura final de la bastida.
Resumo:
Projecte de recerca elaborat a partir d’una estada a l’Institut National de la Recherche Agronomique, França, entre 2007 i 2009. Saccharomyces cerevisiae ha estat el llevat utilitzat durant mil.lenis en l'elaboració de vins. Tot i així, es té poc coneixement sobre les pressions de selecció que han actuat en la modelització del genoma dels llevats vínics. S’ha seqüenciat el genoma d'una soca vínica comercial, EC1118, obtenint 31 supercontigs que cobreixen el 97% del genoma de la soca de referència, S288c. S’ha trobat que el genoma de la soca vínica es diferencia bàsicament en la possessió de 3 regions úniques que contenen 34 gens implicats en funcions claus per al procés fermentatiu. A banda, s’han dut a terme estudis de filogènia i synteny (ordre dels gens) que mostren que una d'aquestes tres regions és pròxima a una espècie relacionada amb el gènere Saccharomyces, mentre que les altres dos regions tenen un origen no-Saccharomyces. S’ha identificat mitjançant PCR i seqüenciació a Zygosaccharomyces bailii, una espècie contaminant de les fermentacions víniques, com a espècie donadora d'una de les dues regions. Les hibridacions naturals entre soques de diferents espècies dins del grup Saccharomyces sensu stricto ja han estat descrites. El treball és el primer que presenta hibridacions entre espècies Saccharomyces i no-Saccharomyces (Z. bailii, en aquest cas). També s’assenyala que les noves regions es troben freqüent i diferencialment presents entre els clades de S. cerevisiae, trobant-se de manera gairebé exclusiva en el grup de les soques víniques, suggerint que es tracta d'una adquisició recent de transferència gènica. En general, les dades demostren que el genoma de les soques víniques pateix una constant remodelació mitjançant l'adquisició de gens exògens. Els resultats suggereixen que aquests processos estan afavorits per la proximitat ecològica i estan implicats en l'adaptació molecular de les soques víniques a les condicions d'elevada concentració en sucres, poc nitrogen i elevades concentracions en etanol.
Resumo:
The antimicrobial effect against L. monocytogenes of biodegradable films (alginate, zein and polyvinyl alcohol) containing enterocins was investigated. Survival of the pathogen was studied by means of challenge tests performed at 6 °C during 8 and 29 days, for air-packed and vacuum-packed sliced cooked ham, respectively. Air packaging was tested with two concentrations of enterocins (200 and 2000 AU/cm2). Control air-packed cooked ham showed an increase of L. monocytogenes from 104 to 107 CFU/g after 8 days. By contrast, packaging with antimicrobial films effectively slowed down the pathogen's growth, leading to final counts lower than in control lots. Air-packaging with alginate films containing 2000 AU/cm2 of enterocins effectively controlled L. monocytogenes for 8 days. An increase of only 1 log unit was observed in zein and polyvinyl alcohol lots at the same enterocin concentration. Vacuum packaging with films containing enterocins (2000 AU/cm2) also delayed the growth of the pathogen. No increase from inoculated levels was observed during 15 days in antimicrobial alginate films. After 29 days of storage, the lowest counts were obtained in samples packed with zein and alginate films containing enterocins, as well as with zein control films. The most effective treatment for controlling L. monocytogenes during 6 °C storage was vacuum-packaging of sliced cooked ham with alginate films containing 2000 AU/cm2 of enterocins. From the results obtained it can concluded that antimicrobial packaging can improve the safety of sliced cooked ham by delaying and reducing the growth of L. monocytogenes.
Resumo:
The efficiency of combining high-pressure processing (HPP) and active packaging technologies to control Listeria monocytogenes growth during the shelf life of artificially inoculated cooked ham was assessed. Three lots of cooked ham were prepared: control, packaging with alginate films, and packaging with antimicrobial alginate films containing enterocins. After packaging, half of the samples were pressurized. Sliced cooked ham stored at 6 °C experienced a quick growth of L. monocytogenes. Both antimicrobial packaging and pressurization delayed the growth of the pathogen. However, at 6 °C the combination of antimicrobial packaging and HPP was necessary to achieve a reduction of inoculated levels without recovery during 60 days of storage. Further storage at 6 °C of pressurized antimicrobial packed cooked ham resulted in L. monocytogenes levels below the detection limit (day 90). On the other hand, storage at 1 °C controlled the growth of the pathogen until day 39 in non-pressurized ham, while antimicrobial packaging and storage at 1 °C exerted a bacteriostatic effect for 60 days. All HPP lots stored at 1 °C led to counts <100 CFU/g at day 60. Similar results were observed when combining both technologies. After a cold chain break no growth of L. monocytogenes was observed in pressurized ham packed with antimicrobial films, showing the efficiency of combining both technologies.
Resumo:
Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.
Resumo:
The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993(T)), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ~13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.
Resumo:
Understanding how blogs can support collaborative learning is a vital concern for researchers and teachers. This paper explores how blogs may be used to support Secondary Education students’ collaborative interaction and how such an interaction process can promote the creation of a Community of Inquiry to enhance critical thinking and meaningful learning. We designed, implemented and evaluated a science case-based project in which fifteen secondary students participated. Students worked in the science blogging project during 4 months. We asked students to be collaboratively engaged in purposeful critical discourse and reflection in their blogs in order to solve collectively science challenges and construct meaning about topics related to Astronomy and Space Sciences. Through student comments posted in the blog, our findings showed that the blog environment afforded the construction of a Community of Inquiry and therefore the creation of an effective online collaborative learning community. In student blog comments, the three presences for collaborative learning took place: cognitive, social, and teaching presence. Moreover, our research found a positive correlation among the three presences –cognitive, social and teaching– of the Community of Inquiry model with the level of learning obtained by the students. We discuss a series of issues that instructors should consider when blogs are incorporated into teaching and learning. We claim that embedded scaffolds to help students to argue and reason their comments in the blog are required to foster blog-supported collaborative learning.
Resumo:
This empirical study consists in an investigation of the effects, on the development of Information Problem Solving (IPS) skills, of a long-term embedded, structured and supported instruction in Secondary Education. Forty secondary students of 7th and 8th grades (13–15 years old) participated in the 2-year IPS instruction designed in this study. Twenty of them participated in the IPS instruction, and the remaining twenty were the control group. All the students were pre- and post-tested in their regular classrooms, and their IPS process and performance were logged by means of screen capture software, to warrant their ecological validity. The IPS constituent skills, the web search sub-skills and the answers given by each participant were analyzed. The main findings of our study suggested that experimental students showed a more expert pattern than the control students regarding the constituent skill ‘defining the problem’ and the following two web search sub-skills: ‘search terms’ typed in a search engine, and ‘selected results’ from a SERP. In addition, scores of task performance were statistically better in experimental students than in control group students. The paper contributes to the discussion of how well-designed and well-embedded scaffolds could be designed in instructional programs in order to guarantee the development and efficiency of the students’ IPS skills by using net information better and participating fully in the global knowledge society.
Resumo:
El objetivo de esta investigación es conocer la tipología de aportaciones, que se producen en el entorno virtual colaborativo Knowledge Forum y comprobar si está teniendo lugar un aprendizaje colaborativo a través del ordenador (CSCL). Las contribuciones a los diferentes 30 foros han sido analizados y categorizados usando un esquema de codificación en base a las scaffolds o andamiajes que dicho entorno proporciona. Los resultados muestran que en conjunto los 308 estudiantes universitarios aportan nueva información y opinan, pero hay escasez de mensajes con diferentes opiniones que lleven a la discusión y a intercambios de puntos de vista distintos.