104 resultados para Monte-Carlo method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new methodology to compute Value at Risk (VaR) for quantifying losses in credit portfolios. We approximate the cumulative distribution of the loss function by a finite combination of Haar wavelet basis functions and calculate the coefficients of the approximation by inverting its Laplace transform. The Wavelet Approximation (WA) method is specially suitable for non-smooth distributions, often arising in small or concentrated portfolios, when the hypothesis of the Basel II formulas are violated. To test the methodology we consider the Vasicek one-factor portfolio credit loss model as our model framework. WA is an accurate, robust and fast method, allowing to estimate VaR much more quickly than with a Monte Carlo (MC) method at the same level of accuracy and reliability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To measure the contribution of individual transactions inside the total risk of a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the risks. However, the usual Monte Carlo (MC) approach is known to be a very time consuming method for computing these risk contributions. In this paper we consider the Wavelet Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities representing the marginal impact on the total portfolio risk. Moreover, we present technical improvements in the Wavelet Approximation (WA) that considerably reduce the computational effort in the approximation while, at the same time, the accuracy increases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article is an introduction to Malliavin Calculus for practitioners.We treat one specific application to the calculation of greeks in Finance.We consider also the kernel density method to compute greeks and anextension of the Vega index called the local vega index.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the (K-, p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density approach and the calculations are performed following two different procedures: one is based on a many-body method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method offers flexibility to account for processes other than kaon quasielastic scattering, such as K- absorption by one and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K-, the p, and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the produced hyperons into pi N. We find a limited sensitivity of the cross section to the strength of the kaon optical potential. We also show a serious drawback in the experimental setup-the requirement for having, together with the energetic proton, at least one charged particle detected in the decay counter surrounding the target-as we find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims made in the experimental paper on the strength of the kaon nucleus optical.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to allow the use of various approximations. Accurate phase shifts have been computed by combining Bühring¿s power-series method with the WKB and Born approximations. This combined procedure allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV. Numerical results are used to analyze the validity of several approximate methods, namely the first- and second-order Born approximations and the screened Mott formula, which are frequently adopted as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the avast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed. The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the case of the fully frustrated model, we also find the intriguing result that critical clusters consist of self-avoiding walk at the theta point.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monte Carlo simulations were used to generate data for ABAB designs of different lengths. The points of change in phase are randomly determined before gathering behaviour measurements, which allows the use of a randomization test as an analytic technique. Data simulation and analysis can be based either on data-division-specific or on common distributions. Following one method or another affects the results obtained after the randomization test has been applied. Therefore, the goal of the study was to examine these effects in more detail. The discrepancies in these approaches are obvious when data with zero treatment effect are considered and such approaches have implications for statistical power studies. Data-division-specific distributions provide more detailed information about the performance of the statistical technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Standard indirect Inference (II) estimators take a given finite-dimensional statistic, Z_{n} , and then estimate the parameters by matching the sample statistic with the model-implied population moment. We here propose a novel estimation method that utilizes all available information contained in the distribution of Z_{n} , not just its first moment. This is done by computing the likelihood of Z_{n}, and then estimating the parameters by either maximizing the likelihood or computing the posterior mean for a given prior of the parameters. These are referred to as the maximum indirect likelihood (MIL) and Bayesian Indirect Likelihood (BIL) estimators, respectively. We show that the IL estimators are first-order equivalent to the corresponding moment-based II estimator that employs the optimal weighting matrix. However, due to higher-order features of Z_{n} , the IL estimators are higher order efficient relative to the standard II estimator. The likelihood of Z_{n} will in general be unknown and so simulated versions of IL estimators are developed. Monte Carlo results for a structural auction model and a DSGE model show that the proposed estimators indeed have attractive finite sample properties.