Estimation of dynamic latent variable models using simulated nonparametric moments


Autoria(s): Creel, Michael D.; Kristensen, Dennis
Contribuinte(s)

Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica

Institut d'Anàlisi Econòmica

Data(s)

13/05/2010

Resumo

Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.

Formato

43

342694 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/53332

Idioma(s)

eng

Relação

Working papers; 792.09

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat, la unitat i l’institut i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Estimació, Teoria de l' #Estadística no paramètrica
Tipo

info:eu-repo/semantics/workingPaper