137 resultados para Karyotype symmetry
Resumo:
[cat] En aquest treball caracteritzem les solucions puntuals de jocs cooperatius d'utilitat transferible que compleixen selecció del core i monotonia agregada. També mostrem que aquestes dues propietats són compatibles amb la individualitat racional, la propietat del jugador fals i la propietat de simetria. Finalment, caracteritzem les solucions puntuals que compleixen les cinc propietats a l'hora.
Resumo:
We investigate the collective organization of paramagnetic colloidal particles externally driven above the periodic stripes of a uniaxial ferrimagnetic garnet film. An external field modulation induces vibration of the stripe walls and produces random motion of the particles. Defects in the stripe pattern break the symmetry of the potential and favor particle nucleation into large clusters above a critical density. Mismatch between particle size and pattern wavelength generates assemblies with different morphological order. At even higher field strengths, repulsive dipolar interactions between the particles induce cluster melting. We propose a novel approach to generate and externally control a variety of colloidal assemblies.
Resumo:
Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
We study the response of Turing stripe patterns to a simple spatiotemporal forcing. This forcing has the form of a traveling wave and is spatially resonant with the characteristic Turing wavelength. Experiments conducted with the photosensitive chlorine dioxide-iodine-malonic acid reaction reveal a striking symmetry-breaking phenomenon of the intrinsic striped patterns giving rise to hexagonal lattices for intermediate values of the forcing velocity. The phenomenon is understood in the framework of the corresponding amplitude equations, which unveils a complex scenario of dynamical behaviors.
Resumo:
We have studied the structural changes that fatty acid monolayers in the Ov phase undergo when a simple shear flow is imposed. A strong coupling is revealed by the changes in domain structure that are observable using Brewster angle microscopy, suggesting the possibility of shear alignment. The dependence of the alignment on the molecular polar tilt proves that the mechanism is different than in nematic liquid crystals. We argue that the degenerate lattice symmetry lines of the underlying pseudohexagonal lattice align in the flow direction, and we explain the observed alignment angle using geometrical arguments.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
The Powell Basin is a small oceanic basin located at the NE end of the Antarctic Peninsula developed during the Early Miocene and mostly surrounded by the continental crusts of the South Orkney Microcontinent, South Scotia Ridge and Antarctic Peninsula margins. Gravity data from the SCAN 97 cruise obtained with the R/V Hespérides and data from the Global Gravity Grid and Sea Floor Topography (GGSFT) database (Sandwell and Smith, 1997) are used to determine the 3D geometry of the crustal-mantle interface (CMI) by numerical inversion methods. Water layer contribution and sedimentary effects were eliminated from the Free Air anomaly to obtain the total anomaly. Sedimentary effects were obtained from the analysis of existing and new SCAN 97 multichannel seismic profiles (MCS). The regional anomaly was obtained after spectral and filtering processes. The smooth 3D geometry of the crustal mantle interface obtained after inversion of the regional anomaly shows an increase in the thickness of the crust towards the continental margins and a NW-SE oriented axis of symmetry coinciding with the position of an older oceanic spreading axis. This interface shows a moderate uplift towards the western part and depicts two main uplifts to the northern and eastern sectors.
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.
Resumo:
We study the electric dipole polarizability α D in 208 Pb based on the predictions of a large and representative set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better understand the correlations between α D and other isovector observables. Insights from the droplet model suggest that the product of α D and the nuclear symmetry energy at saturation density J is much better correlated with the neutron skin thickness r np of 208 Pb than the polarizability alone. Correlations of α D J with r np and with the symmetry energy slope parameter L suggest that α D J is a strong isovector indicator. Hence, we explore the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our theoretical predictions against measurements of both α D and the parity-violating asymmetry in 208 Pb. We find that the recent experimental determination of α D in 208 Pb in combination with the range for the symmetry energy at saturation density J = [31 ± (2) est] MeV suggests r np (208 Pb) = 0 . 165 ± (0 . 009) expt ± (0 . 013) theor ± (0.021) est fm and L = 43 ± (6) expt ± (8) theor ± (12) est MeV
Resumo:
This paper examines statistical analysis of social reciprocity, that is, the balance between addressing and receiving behaviour in social interactions. Specifically, it focuses on the measurement of social reciprocity by means of directionality and skew-symmetry statistics at different levels. Two statistics have been used as overall measures of social reciprocity at group level: the directional consistency and the skew-symmetry statistics. Furthermore, the skew-symmetry statistic allows social researchers to obtain complementary information at dyadic and individual levels. However, having computed these measures, social researchers may be interested in testing statistical hypotheses regarding social reciprocity. For this reason, it has been developed a statistical procedure, based on Monte Carlo sampling, in order to allow social researchers to describe groups and make statistical decisions.
Resumo:
La simetria entre espatlles i l’alçada de les dues crestes ilíaques es perd quan es pateix escoliosi. Aquest empitjorament de la bona postura té conseqüències negatives per a la salut, especialment en el sistema musculoesquelètic. L’objecte principal d’aquest treball és avaluar l’impacte d’un programa d’activitat física basat en la combinació dels mètodes “Klapp” i l’“Stretching Global Actiu” sobre la postura en bipedestació de persones adultes que pateixen escoliosi idiopàtica. L’aplicació d’ambdós mètodes de forma individual no obtenen millores en aquests paràmetres en persones adultes, però en canvi en nens i nenes sí. El treball és un estudi experimental en el qual es va assignar un subjecte al grup intervenció i un subjecte al grup control. El subjecte del grup intervenció va realitzar un programa de 20 sessions de 45 – 60 minuts de treball amb aquests dos mètodes de treball físic. El subjecte del grup control va seguir la seva activitat habitual. Abans i després de la intervenció, es varen mesurar les variables dependents principals i secundaries respectivament. Els resultats obtinguts han revelat una petita millora en la simetria de les espatlles (+0,2 cms.) en el grup intervenció però no en la simetria de l’altura de les crestes ilíaques. El grup control no ha presentat canvis. Per tant, podem dir que és útil utilitzar la combinació dels dos mètodes físics per a millorar la postura en persones adultes que pateixen escoliosi idiopàtica.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.