147 resultados para Feature learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper fills a gap in the existing literature on least squareslearning in linear rational expectations models by studying a setup inwhich agents learn by fitting ARMA models to a subset of the statevariables. This is a natural specification in models with privateinformation because in the presence of hidden state variables, agentshave an incentive to condition forecasts on the infinite past recordsof observables. We study a particular setting in which it sufficesfor agents to fit a first order ARMA process, which preserves thetractability of a finite dimensional parameterization, while permittingconditioning on the infinite past record. We describe how previousresults (Marcet and Sargent [1989a, 1989b] can be adapted to handlethe convergence of estimators of an ARMA process in our self--referentialenvironment. We also study ``rates'' of convergence analytically and viacomputer simulation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work I study the stability of the dynamics generated by adaptivelearning processes in intertemporal economies with lagged variables. Iprove that determinacy of the steady state is a necessary condition for the convergence of the learning dynamics and I show that the reciprocal is not true characterizing the economies where convergence holds. In the case of existence of cycles I show that there is not, in general, a relationship between determinacy and convergence of the learning process to the cycle. I also analyze the expectational stability of these equilibria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents,learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We incorporate the process of enforcement learning by assuming that the agency's current marginal cost is a decreasing function of its past experience of detecting and convicting. The agency accumulates data and information (on criminals, on opportunities of crime) enhancing the ability to apprehend in the future at a lower marginal cost.We focus on the impact of enforcement learning on optimal stationary compliance rules. In particular, we show that the optimal stationary fine could be less-than-maximal and the optimal stationary probability of detection could be higher-than-otherwise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses a model of boundedly rational learning to accountfor the observations of recurrent hyperinflations in the lastdecade. We study a standard monetary model where the fullyrational expectations assumption is replaced by a formaldefinition of quasi-rational learning. The model under learningis able to match remarkably well some crucial stylized factsobserved during the recurrent hyperinflations experienced byseveral countries in the 80's. We argue that, despite being asmall departure from rational expectations, quasi-rationallearning does not preclude falsifiability of the model and itdoes not violate reasonable rationality requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Humanidad siempre ha trasladado, almacenado y difundido información; en este sentido podríamos afirmar que la sociedad de la información es una característica de la sociedad humana. Lo que ha cambiado en los últimos años es fruto de la incorporación de nuevas tecnologías en el tratamiento de la información. La separación que, tradicionalmente, existía entre una época para aprender y una época para trabajar ha terminado. En un momento en que la información es tan caduca, lo que necesitan los ciudadanos no es tanto acumular información como saber obtener buena información. A todos los cambios hay que incorporar, además, el hecho de que las personas cada vez recibimos más información por medios audiovisuales que escritos. Esto conlleva también cambios en la forma de incorporar la información, de entenderla y producirla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Estudiantes motivados producen profesores motivados y viceversa” (Lesley Denham)La cita refleja el efecto recíproco que tiene el comportamiento del profesor en el compromiso de los estudiantes a lo largo del año y viceversa. Es sorprendente como, destacando las fortalezas de cada estudiante en lugar de sus debilidades, nunca comparándolos entre ellos sino con su propio rendimiento, puede despertar una motivación intrínseca en el estudiante, y una merecida satisfacción personal para el profesor.Sin embargo, no existen botones motivacionales mágicos que podamos pulsar y hacer que el alumno quiera aprender. Como profesores, tomar la iniciativa será crucial: dar a nuestros estudiantes el espacio suficiente para experimentar, realzar su autonomía, e intuir las respuestas a través de un proceso inductivo. En definitiva, hacerles protagonistas de su proceso de aprendizaje.Incluir AICLE en la clase de inglés es una metodología que nos ayudará a conseguirlo. Los estudiantes asocian AICLE con algo interesante y divertido, diferente a las sesiones teóricas. Como resultado, al utilizar la lengua, lo hacen movidos por sus sentimientos, aprendiendo de forma implícita.“Estudiants motivats produeixen professors motivats i viceversa” (Lesley Denham)La cita reflecteix l'efecte recíproc que té el comportament del professor en el compromís dels estudiants al llarg de l'any i viceversa. És sorprenent com, destacant les fortaleses de cada estudiant en lloc de les seves debilitats, mai comparant-los entre ells sinó amb el seu propi rendiment, pot despertar una motivació intrínseca a l'estudiant, i una merescuda satisfacció personal per al professor.No obstant això, no existeixen botons motivacionals màgics que puguem prémer i fer que l'alumne vulgui aprendre. Com a professors, prendre la iniciativa serà crucial: donar als nostres estudiants l'espai suficient per experimentar, realçar la seva autonomia, i intuir les respostes a través d'un procés inductiu. En definitiva, fer-los protagonistes del seu procés d'aprenentatge.Incloure AICLE en la classe d'anglès és una metodologia que ens ajudarà a aconseguir-ho. Els estudiants consideren AICLE interessant i divertit, diferent a les sessions teòriques. Com a resultat, en utilitzar la llengua, ho fan moguts pels seus sentiments, aprenent de forma implícita.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standards and specifícations to manage accessibility issues in e-learning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently there are many standards that deal with accessibility issues regarding users’ models, learning scenarios, interaction preferences, devices capabilities, metadata for specifying the delivery of any resource to meet users’ needs, and software accessibility and usability. It is difficult to understand the existing relationships between these standards, as each one represents a different viewpoint and thus has its own sets of goals and scope. This paper gives an overview on existing standards addressing accessibility, usability and adaptation issues in e-learning, and discusses their application to cope with the objectives of the A2UN@ project, which focuses on attending the accessibility and adaptation needs for ALL in Higher Education

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques