Dynamic optimal law enforcement with learning


Autoria(s): Jellal, Mohamed; Garoupa, Nuno
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

We incorporate the process of enforcement learning by assuming that the agency's current marginal cost is a decreasing function of its past experience of detecting and convicting. The agency accumulates data and information (on criminals, on opportunities of crime) enhancing the ability to apprehend in the future at a lower marginal cost.We focus on the impact of enforcement learning on optimal stationary compliance rules. In particular, we show that the optimal stationary fine could be less-than-maximal and the optimal stationary probability of detection could be higher-than-otherwise.

Identificador

http://hdl.handle.net/10230/1128

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Business Economics and Industrial Organization #fine #probability of detection and punishment #learning
Tipo

info:eu-repo/semantics/workingPaper