125 resultados para fish density
Resumo:
This paper deals with the determination of the interface density of states in amorphous silicon-based multilayers. Photothermal deflection spectroscopy is used to characterize two series of aSi:H/aSi1-xCx:H multilayers, and a new approach in the treatment of experimental dada is used in order to obtain accurate results. From this approach, an upper limit of 10^10 cm-2 is determined for the interface density of states.
Resumo:
We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
Resumo:
Spermiogenesis and the ultrastructure of the spermatozoon of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Linnaeus, 1758), have been studied by means of transmission electron microscopy. Spermiogenesis involves firstly the formation of a differentiation zone. It is characterized by the presence of two centrioles associated with striated rootlets, an intercentriolar body and an electron-dense material in the apical region of this zone. Later, two flagella develop from the centrioles, growing orthogonally in relation to the median cytoplasmic process. Flagella then undergo a rotation of 90° until they become parallel to the median cytoplasmic process, followed by the proximodistal fusion of the flagella with the median cytoplasmic process. The nucleus elongates and afterwards it migrates along the spermatid body. Spermiogenesis finishes with the appearance of the apical cone surrounded by the single helical crested body at the base of the spermatid. Finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of C. crassiceps is filiform and contains two axonemes of the 9 + '1' trepaxonematan pattern, a parallel nucleus, parallel cortical microtubules, and electron-dense granules of glycogen. The anterior extremity of the gamete exhibits a short electron-dense apical cone and one crested body, which turns once around the sperm cell. The first axoneme is surrounded by a ring of thick cortical microtubules that persist until the appearance of the second axoneme. Later, these thick cortical microtubules disappear and thus, the mature spermatozoon exhibits two bundles of thin cortical microtubules. The posterior extremity of the male gamete presents only the nucleus. Results are discussed and compared particularly with the available ultrastructural data on the former 'pseudophyllideans'. Two differences can be established between spermatozoa of Bothriocephalidea and Diphyllobothriidea, the type of spermatozoon (II vs I) and the presence/absence of the ring of cortical microtubules.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
A hybrid theory which combines the full nonlocal ¿exact¿ exchange interaction with the local spin-density approximation of density-functional theory is shown to lead to marked improvement in the description of antiferromagnetically coupled systems. Semiquantitative agreement with experiment is found for the magnitude of the coupling constant in La2CuO4, KNiF3, and K2NiF4. The magnitude of the unpaired spin population on the metal site is in excellent agreement with experiment for La2CuO4.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
To better understand the biological controls that regulate sea urchin dynamics, we studied the effects of potential inter- and intra-specific competition for food on several biological variables of the main sea urchin in the Mediterranean (Paracentrotus lividus). We carried out a caging experiment in which we manipulated sea urchin density (natural vs. high density) and herbivorous fish (Sarpa salpa) accessibility (free access vs. exclusion) in a Posidonia oceanica meadow. No evidence of competition between fish and urchins was detected. Neither density-dependent mortality nor changes in the somatic variables were found; however, we detected that intra-specific competition affected the reproductive potential of P. lividus. The gonad index of urchins at high population densities was ca. 30% lower than that of urchins at natural densities. As a spawning event had just occurred when urchins were collected, these differences probably reflect differences in reserve content, which may compromise the following reproductive period and decrease survival in the long term, as the gonads are also used as storage organs. For the time period studied, mortality rates appeared to be independent of local densities. The results indicate that a long-term negative feedback mechanism appears to take place in P. lividus in response to increased population density.
Resumo:
Visual scuba diving censuses were used to assess the effects of fishing prohibition on abundance and size structure of littoral fish populations by comparing the same benthic communities inside and outside the protected area of Medes Islands (NE Catalonia, Spain). The total number of species found was 43 in the reserve and 44 outside, but the mean value of species richness per sampling station was significantly higher in the protected area. However, diversity, heavily affected by the presence or absence of large schools of pelagic species, showed no significant differences between sites. The prohibition of fishing for 6 years is the first factor affecting the qualitative and quantitative structure of fish populations ('reserve effect'), and depth is the second factor. Thus, except in the cases of Serranus cabrilla and Mullus surmuletus, all other vulnerable species are highly sensitive to the protection measures. The size structure of all vulnerable species was found to be absolutely different at the reserve sites than in the unprotected zones, and the modal size classes of size frequency distributions were always higher in the reserve than outside. The reserve effect was significantly responsible of the differences observed in this change on size structure. Some highly vulnerable species, such as Epinephelus guaza and Sciaena umbra, have only been found in the protected area. Others, such as Sparus aurata, Diplodus cervinus and Dicentrarchus labrax, were much more frequent inside the reserve.