97 resultados para computer vision, facial expression recognition, swig, red5, actionscript, ruby on rails, html5
Resumo:
The relief of the seafloor is an important source of data for many scientists. In this paper we present an optical system to deal with underwater 3D reconstruction. This system is formed by three cameras that take images synchronously in a constant frame rate scheme. We use the images taken by these cameras to compute dense 3D reconstructions. We use Bundle Adjustment to estimate the motion ofthe trinocular rig. Given the path followed by the system, we get a dense map of the observed scene by registering the different dense local reconstructions in a unique and bigger one
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Introduction: Moebius syndrome is a rare congenital disorder characterized by unilateral or bilateral involvement of the sixth and seventh cranial nerves, resulting in a lack of facial expression and eye movements. These patients suffer a series of oral manifestations that may complicate their dental treatment, such as facial and tongue muscle weakness, uncontrolled salivation secondary to defi cient lip sealing, micrognathia, microstomia, bifi d uvula, gothic and fi ssured palate, fi ssured tongue, and glossoptosis. The underlying etiology remains unclear, though vascular problems during embryogenesis appear to be involved. Clinical case: We report the case of a woman with Moebius syndrome and total edentulism. Eight years ago she underwent complete oral rehabilitation with the placement of two implants in each dental arch. Discussion: Moebius syndrome has still an unknown etiology, although it is related to disorders during pregnancy. This kind of patient can be rehabilitated using oral implants.
Resumo:
Peer-reviewed
Resumo:
Aquest projecte s'ha desenvolupat dins de l'àrea de visió per computadors, mitjançant el reconeixement d'un patró podem definir tres eixos que conformen un espai tridimensional on hem implementat un videojoc de combats entre robots a sobre d'un entorn real.
Resumo:
L'objectiu principal d'aquest treball és aplicar tècniques de visió articial per aconseguir localitzar i fer el seguiment de les extremitats dels ratolins dins l'entorn de prova de les investigacions d'optogenètica del grup de recerca del Neuroscience Institute de la Universitat de Princeton, Nova Jersey.
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
Resumo:
El càncer de mama és una de les causes de més mortalitat entreles dones dels països desenvolupats. És tractat d'una maneramés eficient quan es fa una detecció precoç, on les tècniques d'imatge són molt importants. Una de les tècniques d'imatge més utilitzades després dels raigs-X són els ultrasons. A l'hora de fer un processat d'imatges d'ultrasò, els experts en aquest camp es troben amb una sèrie de limitacions en el moment d'utilitzar uns filtrats per les imatges, quan es fa ús de determinades eines. Una d'aquestes limitacions consisteix en la falta d'interactivitat que aquestes ens ofereixen. Per tal de solventar aquestes limitacions, s'ha desenvolupat una eina interactiva que permet explorar el mapa de paràmetres visualitzant el resultat del filtrat en temps real, d'una manera dinàmica i intuïtiva. Aquesta eina s'ha desenvolupat dins l'entorn de visualització d'imatge mèdica MeVisLab. El MeVisLab és un entorn molt potent i modular pel desenvolupament d'algorismes de processat d'imatges, visualització i mètodes d'interacció, especialment enfocats a la imatge mèdica. A més del processament bàsic d'imatges i de mòduls de visualització, inclou algorismes avançats de segmentació, registre i moltes análisis morfològiques i funcionals de les imatges.S'ha dut a terme un experiment amb quatre experts que, utilitzantl'eina desenvolupada, han escollit els paràmetres que creien adientsper al filtrat d'una sèrie d'imatges d'ultrasò. En aquest experiments'han utilitzat uns filtres que l'entorn MeVisLab ja té implementats:el Bilateral Filter, l'Anisotropic Difusion i una combinació d'un filtrede Mediana i un de Mitjana.Amb l'experiment realitzat, s'ha fet un estudi dels paràmetres capturats i s'han proposat una sèrie d'estimadors que seran favorables en la majoria dels casos per dur a terme el preprocessat d'imatges d'ultrasò