138 resultados para convergence presque sûre
Resumo:
En aquesta memòria l'autor, fent servir un enfoc modern, redissenya i implementa la plataforma que una empresa de telecomunicacions del segle 21 necessita per poder donar serveis de telefonia i comunicacions als seus usuaris i clients. Al llarg d'aquesta exposició es condueix al lector des d'una fase inicial de disseny fins a la implementació i posada en producció del sistema final desenvolupat, centrant-nos en solucionar les necessitats actuals que això implica. Aquesta memòria cubreix el software, hardware i els processos de negoci associats al repte de fer realitat aquest objectiu, i presenta al lector les múltiples tecnologies emprades per aconseguir-ho, fent emfàsi en la convergència actual de xarxes cap al concepte de xarxes IP i basant-se en aquesta tendència i utilitzant aquesta tecnologia de veu sobre IP per donar forma a la plataforma que finalment, de forma pràctica, es posa en producció.
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
En aquest projecte s’ha estudiat la relació entre els canvis en les temperatures superficials de l’Oceà Atlàntic i els canvis en la circulació atmosfèrica en el segle XX. Concretament s’han analitzat dos períodes de estudi: el primer des del 1940 al 1960 i el segon des del 1980 fins al 2000. S’ha posat especial interès en les anomalies en les temperatures superficials del mar en la regió tropical de l’Oceà Atlàntic i la possible interconnexió amb els canvis climàtics observats i predits. Per a la realització de l’estudi s’han dut a terme una sèrie d’experiments utilitzant el model climàtic elaborat a la universitat d’UCLA (UCLA‐AGCM model). Els resultats obtinguts han estat analitzats en forma de mapes i figures per a cada variable d’estudi. També s’ha fet una comparació entre els resultats obtinguts i altres trobats en altres treballs publicats sobre el mateix tema de recerca. Els resultats obtinguts són molt amplis i poden tenir diverses interpretacions. Tot i així algunes de les conclusions a les quals s’ha arribat són: les diferències més significatives per a les variables estudiades i trobades a partir dels resultats obtinguts del model per als dos períodes d’estudi són en els mesos d’hivern i a la zona dels tròpics; concretament a parts del nord de sud Amèrica i a parts del nord d’Àfrica. S’han trobat també canvis significatius en els patrons de precipitació sobre aquestes mateixes zones. També s’ha observant un moviment cap al nord de la zona d’interconvergència tropical i pot ser degut a l’anòmal gradient trobat a la zona equatorial en les temperatures superficial de l’Oceà. Tot i així per a una definitiva discussió i conclusions sobre els resultats dels experiments, seria necessari un estudi més ampli i profund.
Resumo:
We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
We consider a nonlinear cyclin content structured model of a cell population divided into proliferative and quiescent cells. We show, for particular values of the parameters, existence of solutions that do not depend on the cyclin content. We make numerical simulations for the general case obtaining, for some values of the parameters convergence to the steady state but also oscillations of the population for others.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Resumo:
While much of the literature on immigrants' assimilation has focused on countries with a large tradition of receiving immigrants and with flexible labor markets, very little is known on how immigrants adjust to other types of host economies. With its severe dual labor market, and an unprecedented immigration boom, Spain presents a quite unique experience to analyze immigrations' assimilation process. Using data from the 2000 to 2008 Labor Force Survey, we find that immigrants are more occupationally mobile than natives, and that much of this greater flexibility is explained by immigrants' assimilation process soon after arrival. However, we find little evidence of convergence, especially among women and high skilled immigrants. This suggests that instead of integrating, immigrants occupationally segregate, providing evidence consistent with both imperfect substitutability and immigrants' human capital being under-valued. Additional evidence on the assimilation of earnings and the incidence of permanent employment by different skill levels also supports the hypothesis of segmented labor markets.
Resumo:
El projecte Statmedia 3 ha consolidat definitivament la proposta de les assignatures Bioestadística de Biologia, Anàlisi de dades de Ciències Ambientals i d’Estadística Matemàtica de la Diplomatura renovant una part del material creat amb Statmedia 2. S’han inclòs a més Matemàtiques d’Ambientals i Introducció a la Probabilitat del Grau d’Estadística. L’anterior MQD abastava només pràctiques mentre que aquest projecte permet una oferta diversa d’activitats individualitzades. La individualització consisteix en que cada estudiant rep una proposta de cas personalitzada amb dades diferents. Les activitats poden ser programades presencialment o no, però la clau de l’èxit de l’activitat és que l’alumne obtingui reconeixement del seu treball en l’avaluació continuada. La valoració que fan als alumnes de Statmedia és molt bo, i observem que es produeix una millora en els resultats acadèmics. Statmedia 3 ha implicat un important esforç en la vessant informàtica del projecte, la barreja de tecnologies que utilitzem son punteres: Ajax, servlets i applets Java... Hem posat a punt un assistent on-line per dissenyar documents i planificar activitats que facilita la tasca dels professors. La nostre participació en primera línea del procés de convergència a l’EEES ens ha permès anticipar alguns canvis, i s’ha traduït en que el claustre del Departament d’Estadística assumís que Statmedia és una metodologia essencial dels seus plans docents. El projecte continua en un quart projecte MQD consecutiu, on desplegarem la nova tecnologia implementada. L’objectiu principal serà dotar a les assignatures dels 7 graus on participa el departament d’activitats individualitzades en forma de casos pràctics, problemes i proves diverses. La col·lecció de material emmagatzemada en la nostra biblioteca, forjada després de quasi deu anys de treball continuat, juntament amb l’experiència acumulada de com utilitzar Statmedia de la forma més eficient han començat a ser explotades en els nous graus aquest mateix curs 2009-2010.
Resumo:
We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the onedimensional equation is a contraction with respect to Fourier distance in the subcritical case.
Resumo:
This paper presents value added estimates for the Italian regions, in benchmark years from 1891 until 1951, which are linked to those from official figures available from 1971 in order to offer a long-term picture. Sources and methodology are documented and discussed, whilst regional activity rates and productivity are also presented and compared. Thus some questions are briefly reconsidered: the origins and extent of the north-south divide, the role of migration and regional policy in shaping the pattern of regional inequality, the importance of social capital, and the positioning of Italy in the international debate on regional convergence, where it stands out for the long run persistence of its disparities.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.