133 resultados para Process Error
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
A bidimensional array based on single-photon avalanche diodes for triggered imaging systems is presented. The diodes are operated in the gated mode of acquisition to reduce the probability to detect noise counts interfering with photon arrival events. In addition, low reverse bias overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process gets rid of afterpulses and offers a reduced dark count probability by applying the proposed modes of operation. The detector exhibits a dynamic range of 15 bits with short gated"on" periods of 10ns and a reverse bias overvoltage of 1.0V.
Resumo:
The need to move forward in the knowledge of the subatomic world has stimulated the development of new particle colliders. However, the objectives of the next generation of colliders sets unprecedented challenges to the detector performance. The purpose of this contribution is to present a bidimensional array based on avalanche photodiodes operated in the Geiger mode to track high energy particles in future linear colliders. The bidimensional array can function in a gated mode to reduce the probability to detect noise counts interfering with real events. Low reverse overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process presents an increased efficiency and avoids sensor blindness by applying the proposed techniques.
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.
Resumo:
The turn-on process of a multimode VCSEL is investigated from a statistical point of view. Special attention is paid to quantities such as time jitter and bit error rate. The single-mode performance of VCSEL¿s during current modulation is compared to that of edge-emitting lasers.
Resumo:
Laser-induced forward transfer (LIFT) is a laser direct-write technique that offers the possibility of printing patterns with a high spatial resolution from a wide range of materials in a solid or liquid state, such as conductors, dielectrics, and biomolecules in solution. This versatility has made LIFT a very promising alternative to lithography-based processes for the rapid prototyping of biomolecule microarrays. Here, we study the transfer process through the LIFT of droplets of a solution suitable for microarray preparation. The laser pulse energy and beam size were systematically varied, and the effect on the transferred droplets was evaluated. Controlled transfers in which the deposited droplets displayed optimal features could be obtained by varying these parameters. In addition, the transferred droplet volume displayed a linear dependence on the laser pulse energy. This dependence allowed determining a threshold energy density value, independent of the laser focusing conditions, which acted as necessary conditions for the transfer to occur. The corresponding sufficient condition was given by a different total energy threshold for each laser beam dimension. The threshold energy density was found to be the dimensional parameter that determined the amount of the transferred liquid per laser pulse, and there was no substantial loss of material due to liquid vaporization during the transfer.
Resumo:
We develop a method to obtain first-passage-time statistics for non-Markovian processes driven by dichotomous fluctuations. The fluctuations themselves need not be Markovian. We calculate analytic first-passage-time distributions and mean first-passage times for exponential, rectangular, and long-tail temporal distributions of the fluctuations.
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
We have studied the adsorption process of non-Brownian particles on a line. Our work differs from previously proposed models in that we have incorporated hydrodynamic interactions between the incoming particles and the preadsorbed particles as well as the surface. We then numerically analyze the effect of these interactions on quantities related to the adsorption process. Comparing our model to the ballistic deposition model (BM) shows a significant discrepancy in the pair correlation function. These results can explain some differences between recent experiments and BM predictions. Finally, the limitations of the applicability of BM are addressed.
Resumo:
Exact solutions to FokkerPlanck equations with nonlinear drift are considered. Applications of these exact solutions for concrete models are studied. We arrive at the conclusion that for certain drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be extended without any obstacle to the whole space. But if we introduce a potential barrier that limits the diffusion process, moments converge with a finite relaxation time.
Resumo:
We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.
Resumo:
A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.