124 resultados para PERIODIC-ORBITS
Resumo:
We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.
Resumo:
Let G be an abstract Kac-Moody group over a finite field and G the closure of the image of G in the automorphism group of its positive building. We show that if the Dynkin diagram associated to G is irreducible and neither of spherical nor of affine type, then the contraction groups of elements in G which are not topologically periodic are not closed. (In those groups there always exist elements which are not topologically periodic.)
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
For piecewise linear Lorenz map that expand on average, we show that it admits a dichotomy: it is either periodic renormalizable or prime. As a result, such a map is conjugate to a ß-transformation.
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. L'IES Sant Andreu té una bassa que fa tres anys es va omplir i que s'ha anat poblant de vegetals aquàtics provinents de Banyoles i altres basses naturals a part de la colonització natural pròpia de qualsevol ecosistema. L'estudi de la bassa com un ecosistema és un tema molt interessant ja que es fonamenta bàsicament en l'observació. El treball està estructurat en dues parts. La primera part s'encarrega de l'estudi de les característiques de l'aigua, aquesta part del treball és més experimental. La segona part consisteix en l'observació dels habitants de la bassa. En general el treball tracta de l'ecologia de la bassa de al llarg del semestre Juliol- Desembre 2009. S'han estudiat les característiques físico-químiques de l'aigua i els organismes aquàtics que l'habiten. També s'ha confeccionat un DVD que recull les observacions en viu dels microorganismes més representatius.
Resumo:
Treball de recerca realitzat per una alumna d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. L’albedo lunar i els satèl•lits és un treball que relaciona l’enginyeria aeroespacial amb l’astronomia. El seu objectiu principal investigar si l’albedo lunar, els rajos de sol reflectits a la superfície lunar, pot modificar significativament la temperatura de les plaques solars d’un satèl•lit artificial que orbiti la Lluna i, en conseqüència, afectar-ne el rendiment. El segon objectiu del treball és calcular si seria possible fer un mapa d’albedo lunar, a partir de la temperatura d’un satèl•lit en òrbita al voltant de la Lluna, que permetria conèixer amb més precisió la composició de la superfície lunar. Després d’adquirir els fonaments teòrics necessaris per a realitzar el treball, del procés per a trobar la manera de dur a terme els càlculs i d’efectuar els càlculs en si, les conclusions del treball són que l’albedo lunar causa un augment de temperatura en els satèl•lits prou significatiu per afectar-ne el rendiment; i que amb les temperatures enregistrades per un satèl•lit en òrbita al voltant de la Lluna es podria crear un mapa d’albedo. Aquesta recerca ha estat feta per suggeriment i sota la supervisió del CTAE (Centre de Tecnologia Aeroespacial) per analitzar si els resultats són aplicables al satèl•lit que s’enviarà a la Lluna, Lunar Mission BW1.
Resumo:
We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.
Resumo:
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
Resumo:
La tasca investigadora presentada en aquesta memòria s'ha centrat en les fonts galàctiques de raigs gamma de molt alta energia LS I +61 303, HESS J1708-410 i HESS J1858+020. La primera és una binària de raigs gamma molt estudiada, formada per una estrella massiva i un objecte compacte. S'ha proposat un escenari on l'objecte compacte seria un púlsar jove, i la interacció del seu vent amb el vent de l'estrella generaria els raigs gamma. De totes formes, no s'ha detectat polsos procedents d'aquest putatiu púlsar. L'investigador va realitzar observacions en fase a 1280 MHz amb el radiotelescopi GMRT, sense trobar-hi polsos, cosa que implica un estricte límit superior de 0,38 mJy a la densitat mitjana de flux polsat en un putatiu púlsar amb un període major que 2 mil•lisegons en el sistema binari LS I +61 303. Per altra banda, HESS J1708-410 i HESS J1858+020 són dues fonts esteses de raigs gamma de molt alta energia de les quals no es coneix cap contrapart a d'altres longituds d'ona. L'investigador les va observar amb el GMRT, quatre vegades HESS J1708-410 (dues a 610 MHz i dues a 1400 MHz) i dues vegades HESS J1858+020 (una a cada freqüència). En les imatges realitzades amb aquestes dades no hi ha emissió estesa coincident amb les regions d'emissió de raigs gamma. HESS J1858+020 se solapa parcialment amb una font estesa que podria ser un SNR. De confirmar-se la falta de contrapartida ràdio de HESS J1708-410, estaríem parlant d'un accelerador hadrònic extraordinàriament eficient, d'una classe desconeguda fins ara.
Resumo:
Segons L'índex de Desenvolupament Democràtic d'Amèrica Llatina (IDD-Lat 2004) tot i que a la zona hi ha símbols democràtics com eleccions periòdiques, alternança en el poder per part dels partits polítics, divisió de poders, en alguns dels països llatinoamericans també s'hi ha trobat signes de debilitat del sistema democràtic.
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay
Resumo:
Todos los cuerpos emiten luz espontaneamente al ser calentados. El espectro de radiacion es una funcion de la temperatura y el material. Sin embargo, la mayoria de los materiales irradia, en general, en una banda espectral amplia. Algunas matereiales, por el contrario, son capaces de concentrar la radiacion termica en una banda espectral mucho mas estrecha. Estos materiales se conocen como emisores selectivos y su uso tiene un profundo impacto en la eficiencia de sistemas sistemas tales como iluminacion y conversion de energia termofotovoltaica. De los emisores selectivos se espera que sean capaces de operar a altas temperaturas y que emitan en una banda espectral muy concisa. Uno de los metodos mas prometedores para controlar y disenar el espectro de emision termico es la utilizacion de cristales fotonicos. Los cristales fotonicos son estructuras periodicas artificiales capaces de controlar y confinar la luz de formas sin precedentes. Sin embargo, la produccion de dichas estructuras con grandes superficies y capaces de soportar altas temperaturas sigue siendo una dificil tarea. Este trabajo esta dedicada al estudio de las propiedades de emision termica de estructuras 3D de silicio macroporoso en el rango espectral mid-IR (2-30 m). En particular, este trabajo se enfoca en reducir la elevada emisividad del silicio cristalino. Las muestras estudiadas en este trabajo tienen una periodicidad de 4 m, lo que limitan los resultados obtenidos a la banda del infrarrojo medio, aunque estructuras mucho mas pequenas son tecnologicamente realizables con el metodo de fabricacion utilizado. Hemos demostrado que el silicio macroporoso 3D puede inhibir completamente la emision termica en su superficie. Mas aun, esta banda se puede ajustar en un amplio margen mediante pequenos cambios durante la formacion de los macroporos. Tambien hemos demostrado que tanto el ancho como la frecuencia de la banda de inhibicion se puede doblar mediante la aplicacion de tecnicas de postprocesado adecuadas. Finalmente hemos mostrado que es posible crear bandas de baja emisividad arbitrariamente anchas mediante estructuras macroporosas aperiodicas.