74 resultados para Fractional Diffusion-Wave Equation
Resumo:
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
Selection bias and unobservable heterogeneity applied at the wage equation of European married women
Resumo:
This paper utilizes a panel data sample selection model to correct the selection in the analysis of longitudinal labor market data for married women in European countries. We estimate the female wage equation in a framework of unbalanced panel data models with sample selection. The wage equations of females have several potential sources of.
Resumo:
The autonomous regulatory agency has recently become the ‘appropriate model’ of governance across countries and sectors. The dynamics of this process is captured in our data set, which covers the creation of agencies in 48 countries and 16 sectors since the 1920s. Adopting a diffusion approach to explain this broad process of institutional change, we explore the role of countries and sectors as sources of institutional transfer at different stages of the diffusion process. We demonstrate how the restructuring of national bureaucracies unfolds via four different channels of institutional transfer. Our results challenge theoretical approaches that overemphasize the national dimension in global diffusion and are insensitive to the stages of the diffusion process. Further advance in study of diffusion depends, we assert, on the ability to apply both cross-sectoral and cross-national analysis to the same research design and to incorporate channels of transfer with different causal mechanisms for different stages of the diffusion process.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
Sir James Lighthill proposed in 1992 that acoustic streaming occurs in the inner ear, as part of the cochlear amplifier mechanism. Here we hypothesize that some of the most ancient organisms use acoustic streaming not only for self-propulsion but also to enhance their nutrient uptake. We focus on a motile strain of Synechococcus, a yanobacteria whose mechanism for self-propulsion is not known. Molecular motors could work like piezoelectric transducers acting on the crystalline structure surrounding the outer cell membrane. Our calculations show that a traveling surface acoustic wave (SAW)could account for the observed velocities. These SAW waves will also produce a non-negligible Stokes layer surrounding the cell: motion within this region being essentially chaotic. Therefore, an AS mechanism would be biologically advantageous, enhancing localized diffusion processes and consequently, chemical reactions. We believe that acoustic streaming, produced by nanometer scale membrane vibrations could be widespread in cell biology. Other possible instances are yeast cells and erythrocytes. Flows generated by acoustic streaming may also be produced by silica coated diatoms along their raphe. We note that microelectromechanical (MEMS) acoustic streaming devices were first introduced in the 1990’s. Nature may have preceded this invention by 2.7 Gyr.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.
Resumo:
The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.
Resumo:
Degut als avenços als dispositius de telecomunicacions durant l’última dècada, els filtres integrats en aquests dispositius requereixen de millors prestacions, baix cost i, per sobre de tot, requereixen unes dimensions el més reduïdes possibles. Tot i que avui dia encara s’utilitzen el filtres SAW en aquests dispositius, cada cop més s’estan substituint pels filtres amb tecnologia BAW, ja que tenen millors prestacions. En l’actualitat la topologia BAW més extensa i utilitzada és la topologia en escala. En aquest projecte s’ha portat a terme un estudi en profunditat de les limitacions dels filtres en escala. A partir de les limitacions detectades s’ha presentat una nova estructura de disseny per aquest tipus de filtres que redueix les dimensions d’aquests i millora considerablement algunes de les limitacions de l’estructura convencional. Paral·lelament s’ha desenvolupat una metodologia sistemàtica pròpia pel disseny de la nova estructura.
Resumo:
A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable configurations are generated with positive probability Lundh calls this percolation diffusion. An integral condition for percolation diffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.
Resumo:
A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable con gurations are generated with positive probability Lundh calls this percolation di usion. An integral condition for percolation di ffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.