On Lundh's percolation diffusion


Autoria(s): Carroll, T.; O'Donovan, Julie; Ortega Cerdà, Joaquim
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

2011

Resumo

A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable con gurations are generated with positive probability Lundh calls this percolation di usion. An integral condition for percolation di ffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.

Formato

11 p.

Identificador

http://hdl.handle.net/2072/179356

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1026

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Percolació (Física estadística) #Difusió #531/534 - Mecànica. Vibracions. Acústica
Tipo

info:eu-repo/semantics/preprint