77 resultados para Army package power reactors.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
Abstract.
Resumo:
Experimental results of a new controller able to support bidirectional power flow in a full-bridge rectifier with boost-like topology are obtained. The controller is computed using port Hamiltonian passivity techniques for a suitable generalized state space averaging truncation system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation results for the full system show the essential correctness of the simplifications introduced to obtain the controller, although some small experimental discrepancies point to several aspects that need further improvement.
Resumo:
Voltage fluctuations caused by parasitic impedances in the power supply rails of modern ICs are a major concern in nowadays ICs. The voltage fluctuations are spread out to the diverse nodes of the internal sections causing two effects: a degradation of performances mainly impacting gate delays anda noisy contamination of the quiescent levels of the logic that drives the node. Both effects are presented together, in thispaper, showing than both are a cause of errors in modern and future digital circuits. The paper groups both error mechanismsand shows how the global error rate is related with the voltage deviation and the period of the clock of the digital system.
Resumo:
This paper presents a probabilistic approach to model the problem of power supply voltage fluctuations. Error probability calculations are shown for some 90-nm technology digital circuits.The analysis here considered gives the timing violation error probability as a new design quality factor in front of conventional techniques that assume the full perfection of the circuit. The evaluation of the error bound can be useful for new design paradigms where retry and self-recoveringtechniques are being applied to the design of high performance processors. The method here described allows to evaluate the performance of these techniques by means of calculating the expected error probability in terms of power supply distribution quality.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
The supply voltage decrease and powerconsumption increase of modern ICs made the requirements for low voltage fluctuation caused by packaging and on-chip parasitic impedances more difficult to achieve. Most of the research works on the area assume that all the nodes of the chip are fed at thesame voltage, in such a way that the main cause of disturbance or fluctuation is the parasitic impedance of packaging. In the paper an approach to analyze the effect of high and fast current demands on the on-chip power supply network. First an approach to model the entire network by considering a homogeneous conductive foil is presented. The modification of the timing parameters of flipflops caused by spatial voltage drops through the IC surface are also investigated.
Resumo:
A mathematical model of the voltage drop which arises in on-chip power distribution networks is used to compare the maximum voltage drop in the case of different geometric arrangements of the pads supplying power to the chip. These include the square or Manhattan power pad arrangement, which currently predominates, as well as equilateral triangular and hexagonal arrangements. In agreement with the findings in the literature and with physical and SPICE models, the equilateral triangular power pad arrangement is found to minimize the maximum voltage drop. This headline finding is a consequence of relatively simple formulas for the voltage drop, with explicit error bounds, which are established using complex analysis techniques, and elliptic functions in particular.
Resumo:
Este estudio histórico está dedicado a analizar la ocupación del territorio ilerdense por las tropas francesas, la repercusión y la reacción negativa que provocó en la población de Lleida, sobre todo se hará hincapié en el “Motín del Femeret”, un intento de subversión del poder fáctico tradicional por parte de una muchedumbre enfurecida ante la indolencia de las autoridades locales. También se examinará la organización de la resistencia interior de la ciudad para evitar ser conquistada, su asedio ulterior por parte de los soldados galos, la posterior conquista de Lleida por el ejército napoleónico en el año 1810 y la brutal represión que ejercieron sobre sus habitantes, causando notables daños tanto materiales como personales. Asimismo se hará referencia al gobierno francés del barón Henriod (1810-1812) como también al mandato de Alban de Villeneuve (1812-1814). Además se expondrá la reconquista a principios del año 1814 y finalmente se hará referencia a las consecuencias demográficas, económicas y sociales que produjo la Guerra de la Independencia en la ciudad de Lleida.
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
This study deals with the statistical properties of a randomization test applied to an ABAB design in cases where the desirable random assignment of the points of change in phase is not possible. In order to obtain information about each possible data division we carried out a conditional Monte Carlo simulation with 100,000 samples for each systematically chosen triplet. Robustness and power are studied under several experimental conditions: different autocorrelation levels and different effect sizes, as well as different phase lengths determined by the points of change. Type I error rates were distorted by the presence of autocorrelation for the majority of data divisions. Satisfactory Type II error rates were obtained only for large treatment effects. The relationship between the lengths of the four phases appeared to be an important factor for the robustness and the power of the randomization test.
Resumo:
This paper focuses on cooperative games with transferable utility. We propose the computation of two solutions, the Shapley value for n agents and the nucleolus with a maximum of four agents. The current approach is also focused on conflicting claims problems, a particular case of coalitional games. We provide the computation of the most well-known and used claims solutions: the proportional, the constrained equal awards, the constrained equal losses, the Talmud and the random arrival rules. Keywords: Cooperative game, Shapley value, nucleolus, claims problem, claims rule, bankruptcy.
Resumo:
In the context of autonomous sensors powered by small-size photovoltaic (PV) panels, this work analyses how the efficiency of DC/DC-converter-based power processing circuits can be improved by an appropriate selection of the inductor current that transfers the energy from the PV panel to a storage unit. Each component of power losses (fixed, conduction and switching losses) involved in the DC/DC converter specifically depends on the average inductor current so that there is an optimal value of this current that causes minimal losses and, hence, maximum efficiency. Such an idea has been tested experimentally using two commercial DC/DC converters whose average inductor current is adjustable. Experimental results show that the efficiency can be improved up to 12% by selecting an optimal value of that current, which is around 300-350 mA for such DC/DC converters.