173 resultados para Linear equations
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefinite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld’s nonarchimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet’s bimodules and the specialization of Heegner points, as introduced in [21]. As an application, we provide a list of equations of Shimura curves and quotients of them obtained by our algorithm that had been conjectured by Kurihara.
Resumo:
Aquest projecte proposa materials didàctics per a un nou plantejament de les assignatures de Matemàtiques dels primers cursos de Ciències Empresarials i d'Enginyeria Tècnica, més acord amb el procés de convergència europea, basat en la realització de projectes que anomenem “Tallers de Modelització Matemàtica” (TMM) en els quals: (1) Els alumnes parteixen de situacions i problemes reals per als quals han de construir per sí mateixos els models matemàtics més adients i, a partir de la manipulació adequada d’aquests models, poden obtenir la informació necessària per donar-los resposta. (2) El treball de construcció, experimentació i avaluació dels models es realitza amb el suport de la calculadora simbòlica Wiris i del full de càlcul Excel com a instruments “normalitzats” del treball matemàtic d’estudiants i professors. (3) S’adapten els programes de les assignatures de matemàtiques de primer curs per tal de poder-les associar a un petit nombre de Tallers que parteixen de situacions adaptades a cada titulació. L’assignatura de Matemàtiques per a les Ciències Empresarials s’articula entorn de dos tallers independents: “Matrius de transició” pel que fa a l’àlgebra lineal i “Previsió de vendes” per a la modelització funcional en una variable. L’assignatura de Matemàtiques per a l’Enginyeria s’articula entorn d’un únic taller, “Models de poblacions”, que abasta la majoria de continguts del curs: successions i models funcionals en una variable, àlgebra lineal i equacions diferencials. Un conjunt d’exercicis interactius basats en la calculadora simbòlica WIRIS (Wiris-player) serveix de suport per al treball tècnic imprescindible per al desenvolupament de les dues assignatures. L’experimentació d’aquests tallers durant 2 cursos consecutius (2006/07 i 2007/08) en dues universitats catalanes (URL i UAB) ha posat en evidència tant els innegables avantatges del nou dispositiu docent per a l’aprenentatge dels estudiants, així com les restriccions institucionals que actualment dificulten la seva gestió i difusió.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
In economic literature, information deficiencies and computational complexities have traditionally been solved through the aggregation of agents and institutions. In inputoutput modelling, researchers have been interested in the aggregation problem since the beginning of 1950s. Extending the conventional input-output aggregation approach to the social accounting matrix (SAM) models may help to identify the effects caused by the information problems and data deficiencies that usually appear in the SAM framework. This paper develops the theory of aggregation and applies it to the social accounting matrix model of multipliers. First, we define the concept of linear aggregation in a SAM database context. Second, we define the aggregated partitioned matrices of multipliers which are characteristic of the SAM approach. Third, we extend the analysis to other related concepts, such as aggregation bias and consistency in aggregation. Finally, we provide an illustrative example that shows the effects of aggregating a social accounting matrix model.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
The problem of finding a feasible solution to a linear inequality system arises in numerous contexts. In [12] an algorithm, called extended relaxation method, that solves the feasibility problem, has been proposed by the authors. Convergence of the algorithm has been proven. In this paper, we onsider a class of extended relaxation methods depending on a parameter and prove their convergence. Numerical experiments have been provided, as well.
Resumo:
This paper introduces local distance-based generalized linear models. These models extend (weighted) distance-based linear models firstly with the generalized linear model concept, then by localizing. Distances between individuals are the only predictor information needed to fit these models. Therefore they are applicable to mixed (qualitative and quantitative) explanatory variables or when the regressor is of functional type. Models can be fitted and analysed with the R package dbstats, which implements several distancebased prediction methods.
Resumo:
Aitchison and Bacon-Shone (1999) considered convex linear combinations ofcompositions. In other words, they investigated compositions of compositions, wherethe mixing composition follows a logistic Normal distribution (or a perturbationprocess) and the compositions being mixed follow a logistic Normal distribution. Inthis paper, I investigate the extension to situations where the mixing compositionvaries with a number of dimensions. Examples would be where the mixingproportions vary with time or distance or a combination of the two. Practicalsituations include a river where the mixing proportions vary along the river, or acrossa lake and possibly with a time trend. This is illustrated with a dataset similar to thatused in the Aitchison and Bacon-Shone paper, which looked at how pollution in aloch depended on the pollution in the three rivers that feed the loch. Here, I explicitlymodel the variation in the linear combination across the loch, assuming that the meanof the logistic Normal distribution depends on the river flows and relative distancefrom the source origins
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay
Resumo:
Sediment composition is mainly controlled by the nature of the source rock(s), and chemical (weathering) and physical processes (mechanical crushing, abrasion, hydrodynamic sorting) during alteration and transport. Although the factors controlling these processes are conceptually well understood, detailed quantification of compositional changes induced by a single process are rare, as are examples where the effects of several processes can be distinguished. The present study was designed to characterize the role of mechanical crushing and sorting in the absence of chemical weathering. Twenty sediment samples were taken from Alpine glaciers that erode almost pure granitoid lithologies. For each sample, 11 grain-size fractions from granules to clay (ø grades &-1 to &9) were separated, and each fraction was analysed for its chemical composition.The presence of clear steps in the box-plots of all parts (in adequate ilr and clr scales) against ø is assumed to be explained by typical crystal size ranges for the relevant mineral phases. These scatter plots and the biplot suggest a splitting of the full grain size range into three groups: coarser than ø=4 (comparatively rich in SiO2, Na2O, K2O, Al2O3, and dominated by “felsic” minerals like quartz and feldspar), finer than ø=8 (comparatively rich in TiO2, MnO, MgO, Fe2O3, mostly related to “mafic” sheet silicates like biotite and chlorite), and intermediate grains sizes (4≤ø &8; comparatively rich in P2O5 and CaO, related to apatite, some feldspar).To further test the absence of chemical weathering, the observed compositions were regressed against three explanatory variables: a trend on grain size in ø scale, a step function for ø≥4, and another for ø≥8. The original hypothesis was that the trend could be identified with weathering effects, whereas each step function would highlight those minerals with biggest characteristic size at its lower end. Results suggest that this assumption is reasonable for the step function, but that besides weathering some other factors (different mechanical behavior of minerals) have also an important contribution to the trend.Key words: sediment, geochemistry, grain size, regression, step function