107 resultados para Lefschetz-Hopf Theorem
Resumo:
New sufficient conditions for representation of a function via the absolutely convergent Fourier integral are obtained in the paper. In the main result, Theorem 1.1, this is controlled by the behavior near infinity of both the function and its derivative. This result is extended to any dimension d &= 2.
Resumo:
The relationship between the operator norms of fractional integral operators acting on weighted Lebesgue spaces and the constant of the weights is investigated. Sharp bounds are obtained for both the fractional integral operators and the associated fractional maximal functions. As an application improved Sobolev inequalities are obtained. Some of the techniques used include a sharp off-diagonal version of the extrapolation theorem of Rubio de Francia and characterizations of two-weight norm inequalities.
Resumo:
We study the existence of solutions to general measure-minimization problems over topological classes that are stable under localized Lipschitz homotopy, including the standard Plateau problem without the need for restrictive assumptions such as orientability or even rectifiability of surfaces. In case of problems over an open and bounded domain we establish the existence of a “minimal candidate”, obtained as the limit for the local Hausdorff convergence of a minimizing sequence for which the measure is lower-semicontinuous. Although we do not give a way to control the topological constraint when taking limit yet— except for some examples of topological classes preserving local separation or for periodic two-dimensional sets — we prove that this candidate is an Almgren-minimal set. Thus, using regularity results such as Jean Taylor’s theorem, this could be a way to find solutions to the above minimization problems under a generic setup in arbitrary dimension and codimension.
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. La programació al servei de la matemàtica és un programa informàtic fet amb Excel i Visual Basic. Resol equacions de primer grau, equacions de segon grau, sistemes d'equacions lineals de dues equacions i dues incògnites, sistemes d'equacions lineals compatibles determinats de tres equacions i tres incògnites i troba zeros de funcions amb el teorema de Bolzano. En cadascun dels casos, representa les solucions gràficament. Per a això, en el treball s'ha hagut de treballar, en matemàtiques, amb equacions, nombres complexos, la regla de Cramer per a la resolució de sistemes, i buscar la manera de programar un mètode iteratiu pel teorema de Bolzano. En la part gràfica, s'ha resolt com fer taules de valors amb dues i tres variables i treballar amb rectes i plans. Per la part informàtica, s'ha emprat un llenguatge nou per l'alumne i, sobretot, ha calgut saber decidir on posar una determinada instrucció, ja que el fet de variar-ne la posició una sola línea ho pot canviar tot. A més d'això, s'han resolt altres problemes de programació i també s'ha realitzat el disseny de pantalles.
Resumo:
The main goal of this article is to give an explicit rigid analytic uniformization of the maximal toric quotient of the Jacobian of a Shimura curve over Q at a prime dividing exactly the level. This result can be viewed as complementary to the classical theorem of Cerednik and Drinfeld which provides rigid analytic uniformizations at primes dividing the discriminant. As a corollary, we offer a proof of a conjecture formulated by M. Greenberg in hispaper on Stark-Heegner points and quaternionic Shimura curves, thus making Greenberg's construction of local points on elliptic curves over Q unconditional.
Resumo:
We extend the basic concepts of Street's formal theory of monads from the setting of 2-categories to that of double categories. In particular, we introduce the double category Mnd(C) of monads in a double category C and dene what it means for a double category to admit the construction of free monads. Our main theorem shows that, under some mild conditions, a double category that is a framed bicategory admits the construction of free monads if its horizontal 2-category does. We apply this result to obtain double adjunctions which extend the adjunction between graphs and categories and the adjunction between polynomial endofunctors and polynomial monads.
Resumo:
Is the cohomology of the classifying space of a p-compact group, with Noetherian twisted coefficients, a Noetherian module? This note provides, over the ring of p-adic integers, such a generalization to p-compact groups of the Evens-Venkov Theorem. We consider the cohomology of a space with coefficients in a module, and we compare Noetherianity over the field with p elements, with Noetherianity over the p-adic integers, in the case when the fundamental group is a finite p-group.
Resumo:
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case 0 < q < p <= 1.
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.
Resumo:
L'any 1994, Astala publicà el reconegut teorema de distorió de l'àrea per aplicacions quasiconformes, un resultat innovador que va permetre que n'apareguessin nombrosos més dins d'aquest camp de l'anàlisi durant la darrera dècada. Ens centrem en les conseqüències que té en la distorsió de la mesura de Hausdorff. Seguim la demostració de Lacey, Sawyer i Uriarte-Tuero per la distorsió del contingut de Hausdorff, clarificant-ne alguns punts i canviant l'enfocament per l'acotació de la transformada de Beurling, on prenem les idees d'Astala, Clop, Tolsa, Uriarte-Tuero i Verdera.
Resumo:
This contribution compares existing and newly developed techniques for geometrically representing mean-variances-kewness portfolio frontiers based on the rather widely adapted methodology of polynomial goal programming (PGP) on the one hand and the more recent approach based on the shortage function on the other hand. Moreover, we explain the working of these different methodologies in detail and provide graphical illustrations. Inspired by these illustrations, we prove a generalization of the well-known two fund separation theorem from traditionalmean-variance portfolio theory.
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
Theorem 1 of Euler s paper of 1737 'Variae Observationes Circa Series Infinitas', states the astonishing result that the series of all unit fractions whose denominators are perfect powers of integers minus unity has sum one. Euler attributes the Theorem to Goldbach. The proof is one of those examples of misuse of divergent series to obtain correct results so frequent during the seventeenth and eighteenth centuries. We examine this proof closelyand, with the help of some insight provided by a modern (and completely dierent) proof of the Goldbach-Euler Theorem, we present a rational reconstruction in terms which could be considered rigorous by modern Weierstrassian standards. At the same time, with a few ideas borrowed from nonstandard analysis we see how the same reconstruction can be also be considered rigorous by modern Robinsonian standards. This last approach, though, is completely in tune with Goldbach and Euler s proof. We hope to convince the reader then how, a few simple ideas from nonstandard analysis, vindicate Euler's work.