58 resultados para Automatic segmentation
Resumo:
This paper proposes to enrich RBMTdictionaries with Named Entities(NEs) automatically acquired fromWikipedia. The method is appliedto the Apertium English-Spanishsystem and its performance comparedto that of Apertium with and withouthandtagged NEs. The system withautomatic NEs outperforms the onewithout NEs, while results vary whencompared to a system with handtaggedNEs (results are comparable forSpanish to English but slightly worstfor English to Spanish). Apart fromthat, adding automatic NEs contributesto decreasing the amount of unknownterms by more than 10%.
Resumo:
Many Spanish destinations are now considering low cost airlines (LCA) important for attracting tourists. However, there is little evidence on the characteristics travelers using low cost airlines and their flight preferences. Typical segmentation of air travelers are business versus leisure travelers and business versus tourist fares. The aim of this paper is to obtain a deeper understanding of the demand of LCA through a segmentation analysis, based on 808 foreign travelers who used Girona airport, that focuses on low cost travelers’ valuations of different flight attributes and trip related characteristics
Resumo:
En aquest projecte fem un estudi de diferents mètodes per a la segmentació i extracció de línies de mapes de metro com a suport per a daltònics. Hem aplicat dos mètodes amb intervenció de l’usuari i cinc mètodes automàtics on fem servir K-means per a la segmentació de color i Hough per a l’extracció de línies. Dels mètodes amb intervenció obtenim millors resultats amb un mètode d’assignació aproximada del color, i entre els autoàatics tenim com a millor una solució ad-hoc sense paràmetres aplicada sobre l’espai RGB. D’acord amb els resultats experimentals, aquests mètodes ens permeten fer una bona segmentació i extracció de les línies de metro.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
Peer-reviewed
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.
Resumo:
The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.
Resumo:
Marketing scholars have suggested a need for more empirical research on consumer response to malls, in order to have a better understanding of the variables that explain the behavior of the consumers. The segmentation methodology CHAID (Chi-square automatic interaction detection) was used in order to identify the profiles of consumers with regard to their activities at malls, on the basis of socio-demographic variables and behavioral variables (how and with whom they go to the malls). A sample of 790 subjects answered an online questionnaire. The CHAID analysis of the results was used to identify the profiles of consumers with regard to their activities at malls. In the set of variables analyzed the transport used in order to go shopping and the frequency of visits to centers are the main predictors of behavior in malls. The results provide guidelines for the development of effective strategies to attract consumers to malls and retain them there.
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms