61 resultados para ARRAY-CGH


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the motivation, design, and implementation of the CORNISH survey, an arcsecondresolution radio continuum survey of the inner galactic plane at 5 GHz using the Very Large Array (VLA). It is a blind survey coordinated with the northern SpitzerGLIMPSE I region covering 10°

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims.We revisit the vicinity of the microquasar Cygnus X-3 at radio wavelengths. We aim to improve our previous search for possible associated extended radio features/hot spots in the position angle of the Cygnus X-3 relativistic jets focusing on shorter angular scales than previously explored. Methods.Our work is mostly based on analyzing modern survey and archive radio data, mainly including observations carried out with the Very Large Array and the Ryle Telescopes. We also used deep near-infrared images that we obtained in 2005. Results.We present new radio maps of the Cygnus X-3 field computed after combining multi-configuration Very Large Array archive data at 6 cm and different observing runs at 2 cm with the Ryle Telescope. These are probably among the deepest radio images of Cygnus X-3 reported to date at cm wavelengths. Both interferometers reveal an extended radio feature within a few arc-minutes of the microquasar position, thus making our detection more credible. Moreover, this extended emission is possibly non-thermal, although this point still needs confirmation. Its physical connection with the microquasar is tentatively considered under different physical scenarios. We also report on the serendipitous discovery of a likely Fanaroff-Riley type II radio galaxy only away from Cygnus X-3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to move forward in the knowledge of the subatomic world has stimulated the development of new particle colliders. However, the objectives of the next generation of colliders sets unprecedented challenges to the detector performance. The purpose of this contribution is to present a bidimensional array based on avalanche photodiodes operated in the Geiger mode to track high energy particles in future linear colliders. The bidimensional array can function in a gated mode to reduce the probability to detect noise counts interfering with real events. Low reverse overvoltages are used to lessen the dark count rate. Experimental results demonstrate that the prototype fabricated with a standard HV-CMOS process presents an increased efficiency and avoids sensor blindness by applying the proposed techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enhancement in the production of even-Z nuclei observed in nuclear fission has also been observed in fragments produced from heavy ion collsions. Beams of 40Ar, 40Cl, and 40Ca at 25 MeV/nucleon were impinged on 58Fe and 58Ni targets. The resulting fragments were detected using the MSU 4pi detector array, which had additional silicon detectors for better isotopic resolution. Comparison of the ratios of yields for each element showed enhancement of even-Z fragment production. The enhancement was more pronounced for reactions with a greater difference in the N/Z of the compound system. However, this effect was less for systems that were more neutron rich. The average N/Z for fragments also displayed an odd-even effect with a lower average N/Z for the even-Z fragments. This is related to the greater availability of neutron-poor isotopes for even-Z nuclei

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phase-field model for dealing with dynamic instabilities in membranes is presented. We use it to study curvature-driven pearling instability in vesicles induced by the anchorage of amphiphilic polymers on the membrane. Within this model, we obtain the morphological changes reported in recent experiments. The formation of a homogeneous pearled structure is achieved by consequent pearling of an initial cylindrical tube from the tip. For high enough concentration of anchors, we show theoretically that the homogeneous pearled shape is energetically less favorable than an inhomogeneous one, with a large sphere connected to an array of smaller spheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Omega increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N < 10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Omega.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how macroscopic manifestations of P (and T) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that the cross sections for both scattering and bremsstrahlung (soft-photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the quantum Hall effect, a result that we relate to the validity of the mean-field approximation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic properties of Fe nanodots are simulated using a scaling technique and Monte Carlo method, in good agreement with experimental results. For the 20-nm-thick dots with diameters larger than 60¿nm, the magnetization reversal via vortex state is observed. The role of magnetic interaction between dots in arrays in the reversal process is studied as a function of nanometric center-to-center distance. When this distance is more than twice the dot diameter, the interaction can be neglected and the magnetic properties of the entire array are determined by the magnetic configuration of the individual dots. The effect of crystalline anisotropy on the vortex state is investigated. For arrays of noninteracting dots, the anisotropy strongly affects the vortex nucleation field and coercivity, and only slightly affects the vortex annihilation field

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a theoretical study of the recently observed dynamical regimes of paramagnetic colloidal particles externally driven above a regular lattice of magnetic bubbles [P. Tierno, T. H. Johansen, and T. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)]. An external precessing magnetic field alters the potential generated by the surface of the film in such a way to either drive the particle circularly around one bubble, ballistically through the array, or in triangular orbits on the interstitial regions between the bubbles. In the ballistic regime, we observe different trajectories performed by the particles phase locked with the external driving. Superdiffusive motion, which was experimentally found bridging the localized and delocalized dynamics, emerge only by introducing a certain degree of randomness into the bubbles size distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Majolica pottery is one of the most characteristic tableware produced during the Medieval and Renaissance periods. Majolica technology was introduced to the Iberian Peninsula by Islamic artisans during Medieval times, and its production and popularity rapidly spread throughout Spain and eventually to other locations in Europe and the Americas. The prestige and importance of Spanish majolica was very high. Consequently, this ware was imported profusely to the Americas during the Spanish Colonial period. Nowadays, Majolica pottery serves as an important horizon marker at Spanish colonial sites. A preliminary study of Spanish-produced majolica was conducted on a set of 246 samples from the 12 primary majolica production centers on the Iberian Peninsula. The samples were analyzed by neutron activation analysis (NAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination between different production centers. In some cases, our data allow one to distinguish amongst shards coming from the same production location suggesting different workshops or group of workshops were responsible for production of this pre-industrial pottery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic Force Microscope and related techniques have played a key role in the development of the nanotechnology revolution that is taking place in science. This paper reviews the basic principles behind the technique and its different operation modes and applications, pointing out research worksperformed in the Nanometric Techniques Unit of the CCiTUB in order to exemplify the vast array of capabilities of these instruments.