67 resultados para adaptive algorithms
Resumo:
We consider an oligopolistic market game, in which the players are competing firm in the same market of a homogeneous consumption good. The consumer side is represented by a fixed demand function. The firms decide how much to produce of a perishable consumption good, and they decide upon a number of information signals to be sent into the population in order to attract customers. Due to the minimal information provided, the players do not have a well--specified model of their environment. Our main objective is to characterize the adaptive behavior of the players in such a situation.
Resumo:
We propose a simple adaptive procedure for playing a game. In thisprocedure, players depart from their current play with probabilities thatare proportional to measures of regret for not having used other strategies(these measures are updated every period). It is shown that our adaptiveprocedure guaranties that with probability one, the sample distributionsof play converge to the set of correlated equilibria of the game. Tocompute these regret measures, a player needs to know his payoff functionand the history of play. We also offer a variation where every playerknows only his own realized payoff history (but not his payoff function).
Resumo:
The Generalized Assignment Problem consists in assigning a setof tasks to a set of agents with minimum cost. Each agent hasa limited amount of a single resource and each task must beassigned to one and only one agent, requiring a certain amountof the resource of the agent. We present new metaheuristics forthe generalized assignment problem based on hybrid approaches.One metaheuristic is a MAX-MIN Ant System (MMAS), an improvedversion of the Ant System, which was recently proposed byStutzle and Hoos to combinatorial optimization problems, and itcan be seen has an adaptive sampling algorithm that takes inconsideration the experience gathered in earlier iterations ofthe algorithm. Moreover, the latter heuristic is combined withlocal search and tabu search heuristics to improve the search.A greedy randomized adaptive search heuristic (GRASP) is alsoproposed. Several neighborhoods are studied, including one basedon ejection chains that produces good moves withoutincreasing the computational effort. We present computationalresults of the comparative performance, followed by concludingremarks and ideas on future research in generalized assignmentrelated problems.
Resumo:
Many experiments have shown that human subjects do not necessarily behave in line with game theoretic assumptions and solution concepts. The reasons for this non-conformity are multiple. In this paper we study the argument whether a deviation from game theory is because subjects are rational, but doubt that others are rational as well, compared to the argument that subjects, in general, are boundedly rational themselves. To distinguish these two hypotheses, we study behavior in repeated 2-person and many-person Beauty-Contest-Games which are strategically different from one another. We analyze four different treatments and observe that convergence toward equilibrium is driven by learning through the information about the other player s choice and adaptation rather than self-initiated rational reasoning.
Resumo:
Given $n$ independent replicates of a jointly distributed pair $(X,Y)\in {\cal R}^d \times {\cal R}$, we wish to select from a fixed sequence of model classes ${\cal F}_1, {\cal F}_2, \ldots$ a deterministic prediction rule $f: {\cal R}^d \to {\cal R}$ whose risk is small. We investigate the possibility of empirically assessingthe {\em complexity} of each model class, that is, the actual difficulty of the estimation problem within each class. The estimated complexities are in turn used to define an adaptive model selection procedure, which is based on complexity penalized empirical risk.The available data are divided into two parts. The first is used to form an empirical cover of each model class, and the second is used to select a candidate rule from each cover based on empirical risk. The covering radii are determined empirically to optimize a tight upper bound on the estimation error. An estimate is chosen from the list of candidates in order to minimize the sum of class complexity and empirical risk. A distinguishing feature of the approach is that the complexity of each model class is assessed empirically, based on the size of its empirical cover.Finite sample performance bounds are established for the estimates, and these bounds are applied to several non-parametric estimation problems. The estimates are shown to achieve a favorable tradeoff between approximation and estimation error, and to perform as well as if the distribution-dependent complexities of the model classes were known beforehand. In addition, it is shown that the estimate can be consistent,and even possess near optimal rates of convergence, when each model class has an infinite VC or pseudo dimension.For regression estimation with squared loss we modify our estimate to achieve a faster rate of convergence.
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
Resumo:
We consider an agent who has to repeatedly make choices in an uncertainand changing environment, who has full information of the past, who discountsfuture payoffs, but who has no prior. We provide a learning algorithm thatperforms almost as well as the best of a given finite number of experts orbenchmark strategies and does so at any point in time, provided the agentis sufficiently patient. The key is to find the appropriate degree of forgettingdistant past. Standard learning algorithms that treat recent and distant pastequally do not have the sequential epsilon optimality property.
Resumo:
PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.
Resumo:
This paper studies the equilibrating process of several implementationmechanisms using naive adaptive dynamics. We show that the dynamics convergeand are stable, for the canonical mechanism of implementation in Nash equilibrium.In this way we cast some doubt on the criticism of ``complexity'' commonlyused against this mechanism. For mechanisms that use more refined equilibrium concepts,the dynamics converge but are not stable. Some papers in the literatureon implementation with refined equilibrium concepts have claimed that themechanisms they propose are ``simple'' and implement ``everything'' (incontrast with the canonical mechanism). The fact that some of these ``simple''mechanisms have unstable equilibria suggests that these statements shouldbe interpreted with some caution.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigated
Resumo:
This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied.We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that the algorithm speed is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.
Resumo:
A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimization of the output mutual information, needs the knowledge of log-derivative of input distribution (the so-called score function). Each algorithm consists of three adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally adapted using the estimated score functions. This paper is mainly concerned by the nonlinear part, for which we propose two parametric models, the first based on a polynomial model and the second on a neural network, while [14, 15] proposed non-parametric approaches.
Resumo:
In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.
Resumo:
In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.