58 resultados para Second-order systems of ordinary differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Lucas functions, an improved version of the Diffie-Hellman distribution key scheme and to the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise estimation of propagation parameters inprecipitation media is of interest to improve the performanceof communications systems and in remote sensing applications.In this paper, we present maximum-likelihood estimators ofspecific attenuation and specific differential phase in rain. Themodel used for obtaining the cited estimators assumes coherentpropagation, reflection symmetry of the medium, and Gaussianstatistics of the scattering matrix measurements. No assumptionsabout the microphysical properties of the medium are needed.The performance of the estimators is evaluated through simulateddata. Results show negligible estimators bias and variances closeto Cramer–Rao bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a Hamiltonian formulation for the three-dimensional formalism of predictive relativistic mechanics. This Hamiltonian structure is used to derive a set of dynamical equations describing the interaction among systems in perturbation theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple Sclerosis is the most common non-traumatic cause of neurologicaldisability in young people. There is no cure yet, and until recently, few long-termtherapies existed. Interferon beta (IFNβ) was the first treatment, and remains the mostcommonly prescribed. One of the most significant problems of IFNβ therapy is theproduction of drug specific antibodies. Up to 45% of patients develop neutralizingantibodies (NAbs) to IFNβ products. The neutralizing antibody binds to the biologicalagent preventing its interaction with its receptor, inhibiting the biological action of theprotein, which abrogates the clinical efficacy of IFNβ treatment. Interferon-betamediates its response by binding to its high affinity cell surface receptor and initiatingthe JAK/STAT signalling cascade. In this project we have analyzed the IFNβ signalingpathway in macrophages when neutralizing antibodies are present. The response tothis pathway after IFNβ stimulation shows a transient oscillatory rhythm of STAT1phosphorylation, which varies as NAbs concentration increases. To improve ourunderstanding of that behavior, we extended an existing mathematical model based onnonlinear ordinary differential equations of JAK/STAT pathway by including IFN-NAbassociation and IFN-activation receptor. Combining our theoretical model withexperimental data we could study the role of neutralizing antibodies on the molecularresponse and determine its lifetime after cytokine stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the existence of a unique solution for linear stochastic differential equations driven by a Lévy process, where the initial condition and the coefficients are random and not necessarily adapted to the underlying filtration. Towards this end, we extend the method based on Girsanov transformations on Wiener space and developped by Buckdahn [7] to the canonical Lévy space, which is introduced in [25].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Part I, we formulate and examine some systems that have arisen in the study of the constructible hierarchy; we find numerous transitive models for them, among which are supertransitive models containing all ordinals that show that Devlin's system BS lies strictly between Gandy's systems PZ and BST'; and we use our models to show that BS fails to handle even the simplest rudimentary functions, and is thus inadequate for the use intended for it in Devlin's treatise. In Part II we propose and study an enhancement of the underlying logic of these systems, build further models to show where the previous hierarchy of systems is preserved by our enhancement; and consider three systems that might serve for Devlin's purposes: one the enhancement of a version of BS, one a formulation of Gandy-Jensen set theory, and the third a subsystem common to those two. In Part III we give new proofs of results of Boffa by constructing three models in which, respectively, TCo, AxPair and AxSing fail; we give some sufficient conditions for a set not to belong to the rudimentary closure of another set, and thus answer a question of McAloon; and we comment on Gandy's numerals and correct and sharpen other of his observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"