53 resultados para SELF-DIFFUSION COEFFICIENTS
Resumo:
We investigate different models that are intended to describe the small mean free path regime of a kinetic equation, a particular attention being paid to the moment closure by entropy minimization. We introduce a specific asymptotic-induced numerical strategy which is able to treat the stiff terms of the asymptotic diffusive regime. We evaluate on numerics the performances of the method and the abilities of the reduced models to capture the main features of the full kinetic equation.
Resumo:
Estudi elaborat a partir d’una estada al Stony Brook University al juliol del 2006. El RbTiOPO4 (RTP) monocristal•lí és un material d' òptica no lineal molt rellevant i utilitzat en la tecnologia làser actual, químicament molt estable i amb unes propietats físiques molt destacades, entre elles destaquen els alts coeficients electro-òptics i l'alt llindar de dany òptic que presenta. En els últims anys s’està utilitzant tecnològicament en aplicacions d'òptica no lineal en general i electro-òptiques en particular. En alguns casos ja ha substituït, millorant prestacions, a materials tals com el KTP o el LNB(1). Dopant RTP amb ions lantànids (Ln3+) (2-4), el material es converteix en un material làser auto-doblador de freqüència, combinant les seves propietats no lineals amb les de matriu làser. El RTP genera radiació de segon harmònic (SHG) a partir d’un feix fonamental amb longituds d’ona inferiors a 990 nm, que és el límit que presenta el KTP.La determinació de la ubicació estructural i l’estudi de l'entorn local del ions actius làser és de fonamental importància per a la correcta interpretació de les propietats espectroscòpiques d’aquest material. Mesures de difracció de neutrons sobre mostra de pols cristal•lí mostren que els ions Nb5+ i Ln3+ només substitueixin posicions de Ti4+ (8-9). Estudis molt recents d'EPR (electron paramagnetic resonance) semblen indicar que quan la concentració d'ió Ln3+ es baixa, aquest ió presenta la tendència a substituir l'ió alcalí present a l'estructura (10).Després dels resultats obtinguts en el present treball a partir de la tècnica EXAFS a la instal•lació sincrotò del Brookhaven National Laboratory/State University of New York (Stony Brook) es pot concloure definitivament que els ions Nb s’ubiquen en la posició Ti (1) i que els ions Yb3+ es distribueixen paritariament en les dues posicions del Ti (1 i 2). Aquests resultats aporten una valuosa informació per a la correcta interpretació dels espectres, tant d’absorció com d’emissió, del material i per la avaluació dels paràmetres del seu comportament durant l'acció làser.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
One of the most persistent and lasting debates in economic research refers to whether the answers to subjective questions can be used to explain individuals’ economic behavior. Using panel data for twelve EU countries, in the present study we analyze the causal relationship between self-reported housing satisfaction and residential mobility. Our results indicate that: i) households unsatisfied with their current housing situation are more likely to move; ii) housing satisfaction raises after a move, and; iii) housing satisfaction increases with the transition from being a renter to becoming a homeowner. Some interesting cross-country differences are observed. Our findings provide evidence in favor of use of subjective indicators of satisfaction with certain life domains in the analysis of individuals’ economic conduct.
Resumo:
The objective of this paper is to analyse to what extent the use of cross-section data will distort the estimated elasticities for car ownership demand when the observed variables do not correspond to a state equilibrium for some individuals in the sample. Our proposal consists of approximating the equilibrium values of the observed variables by constructing a pseudo-panel data set which entails averaging individuals observed at different points of time into cohorts. The results show that individual and aggregate data lead to almost the same value for income elasticity, whereas with respect to working adult elasticity the similarity is less pronounced.
Resumo:
It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The autonomous regulatory agency has recently become the ‘appropriate model’ of governance across countries and sectors. The dynamics of this process is captured in our data set, which covers the creation of agencies in 48 countries and 16 sectors since the 1920s. Adopting a diffusion approach to explain this broad process of institutional change, we explore the role of countries and sectors as sources of institutional transfer at different stages of the diffusion process. We demonstrate how the restructuring of national bureaucracies unfolds via four different channels of institutional transfer. Our results challenge theoretical approaches that overemphasize the national dimension in global diffusion and are insensitive to the stages of the diffusion process. Further advance in study of diffusion depends, we assert, on the ability to apply both cross-sectoral and cross-national analysis to the same research design and to incorporate channels of transfer with different causal mechanisms for different stages of the diffusion process.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.
Resumo:
The paradox of autonomy is about whether self-rule accommodates or exacerbates armed conflict. This study attempts to unpack the puzzle examining the effectiveness of territorial autonomy as a state response to self-determination conflicts throughout the world. It challenges the conflict-inducing features of autonomy arguing that territorial autonomy can mitigate armed conflict by channeling group grievances into peaceful forms of protest. Thus, this study aims at arriving at a comprehensive theory that identifies which factors are responsible for violent escalation of conflicts grounded in self-determination demands. By using the concepts of opportunity structures and willingness dimension, this study shows that conflict escalation only takes place when minorities with greater bargaining power vis-à-vis the center, in contexts of high levels of economic inequality within dyad, are mobilized around autonomy and separatist demands.
Resumo:
"Vegeu el resum a l'inici del document del fitxer ajunt."
Resumo:
In this paper we consider a representative a priori unstable Hamiltonian system with 2+1/2 degrees of freedom, to which we apply the geometric mechanism for diffusion introduced in the paper Delshams et al., Mem.Amer.Math. Soc. 2006, and generalized in Delshams and Huguet, Nonlinearity 2009, and provide explicit, concrete and easily verifiable conditions for the existence of diffusing orbits. The simplification of the hypotheses allows us to perform explicitly the computations along the proof, which contribute to present in an easily understandable way the geometric mechanism of diffusion. In particular, we fully describe the construction of the scattering map and the combination of two types of dynamics on a normally hyperbolic invariant manifold.