72 resultados para Multivariable fractional polynomial (MFP)
Resumo:
A lo largo de este artículo se analizan los efectos del sistema electoral europeo en España sobre los partidos políticos de ámbito no estatal. Por un lado, se estudia el funcionamiento de la normativa electoral española, subrayando la sobrerepresentación de unos partidos políticos y la infrarepresentación de otros en función del ámbito territorial organizativo de la formación política. Por otro lado, se presentan datos sistemáticos y comparados que demuestran esta distorsión de la representación política –fruto de la normativa electoral-, y dibujamos la estrategia electoral que los partidos políticos afectados negativamente desarrollan: las coaliciones electorales. Pero, ¿en base a qué criterios se organizan tales coaliciones electorales? El enfoque multivariable –la circunscripción, la magnitud electoral y el número de eurodiputados españoles- nos va permitir responder a esta y otras preguntas. El objetivo es ahondar en el debate sobre la normativa electoral en la arena política europea.
Resumo:
Given a non-positively curved 2-complex with a circle-valued Morse function satisfying some extra combinatorial conditions, we describe how to locally isometrically embed this in a larger non- positively curved 2-complex with free-by-cyclic fundamental group. This embedding procedure is used to produce examples of CAT(0) free-by-cyclic groups that contain closed hyperbolic surface subgroups with polynomial distortion of arbitrary degree. We also produce examples of CAT(0) hyperbolic free-by-cyclic groups that contain closed hyperbolic surface subgroups that are exponentially distorted.
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.
Resumo:
R.P. Boas has found necessary and sufficient conditions of belonging of function to Lipschitz class. From his findings it turned out, that the conditions on sine and cosine coefficients for belonging of function to Lip α(0 & α & 1) are the same, but for Lip 1 are different. Later his results were generalized by many authors in the viewpoint of generalization of condition on the majorant of modulus of continuity. The aim of this paper is to obtain Boas-type theorems for generalized Lipschitz classes. To define generalized Lipschitz classes we use the concept of modulus of smoothness of fractional order.
Resumo:
Planar polynomial vector fields which admit invariant algebraic curves, Darboux integrating factors or Darboux first integrals are of special interest. In the present paper we solve the inverse problem for invariant algebraic curves with a given multiplicity and for integrating factors, under generic assumptions regarding the (multiple) invariant algebraic curves involved. In particular we prove, in this generic scenario, that the existence of a Darboux integrating factor implies Darboux integrability. Furthermore we construct examples where the genericity assumption does not hold and indicate that the situation is different for these.
Resumo:
L’objectiu d’aquest projecte es basa en l’obtenció de filtres passa banda mitjançant acobladors ressonants en l’ordre dels GHz, amb un ampla de banda fraccional del 30%. En un primer disseny es presentarà l’estudi del coeficient d’acoblament entre partícules ressonants i tot seguit s’introduirà una capacitat interdigital per a augmentar l’acoblament. Mitjançant el nou disseny es demostrarà que es pot arribar a resultats òptims tant en simulacions com a l’hora de fabricar el dispositiu.
Resumo:
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
Resumo:
Report for the scientific sojourn at the Department of Information Technology (INTEC) at the Ghent University, Belgium, from january to june 2007. All-Optical Label Swapping (AOLS) forms a key technology towards the implementation of All-Optical Packet Switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the wayin which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This project studies and proposes All-Optical Label Stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this project, an Integer Lineal Program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more.
Resumo:
Given an algebraic curve in the complex affine plane, we describe how to determine all planar polynomial vector fields which leave this curve invariant. If all (finite) singular points of the curve are nondegenerate, we give an explicit expression for these vector fields. In the general setting we provide an algorithmic approach, and as an alternative we discuss sigma processes.
Resumo:
The empirical finding of an inverse U-shaped relationship between per capita income and pollution, the so-called Environmental Kuznets Curve (EKC), suggests that as countries experience economic growth, environmental deterioration decelerates and thus becomes less of an issue. Focusing on the prime example of carbon emissions, the present article provides a critical review of the new econometric techniques that have questioned the baseline polynomial specification in the EKC literature. We discuss issues related to the functional form, heterogeneity, “spurious” regressions and spatial dependence to address whether and to what extent the EKC can be observed. Despite these new approaches, there is still no clear-cut evidence supporting the existence of the EKC for carbon emissions. JEL classifications: C20; Q32; Q50; O13 Keywords: Environmental Kuznets Curve; Carbon emissions; Functional form; Heterogeneity; “Spurious” regressions; Spatial dependence.Residential satisfaction is often used as a barometer to assess the performance of public policy and programmes designed to raise individuals' well-being. However, the fact that responses elicited from residents might be biased by subjective, non-observable factors casts doubt on whether these responses can be taken as trustable indicators of the individuals' housing situation. Emotional factors such as aspirations or expectations might affect individuals' cognitions of their true residential situation. To disentangle this puzzle, we investigated whether identical residential attributes can be perceived differently depending on tenure status. Our results indicate that tenure status is crucial not only in determining the level of housing satisfaction, but also regarding how dwellers perceive their housing characteristics. Keywords: Housing satisfaction, subjective well-being, homeownership. JEL classification: D1, R2.
Resumo:
En este proyecto se ha desarrollado estrategias de control avanzadas para plantas de depuración de aguas residuales urbanas que eliminan conjuntamente materia orgánica, nitrógeno y fósforo. Las estrategias se han basado en el estudio multivariable del comportamiento del sistema, que ha producido subsidios para la utilización de lazos de control feedforward, de control predictivo y de un control de costes que automáticamente enviaba las consignas más adecuadas para los controladores de proceso. Para el desarrollo de las estrategias, se ha creado un sistema virtual de simulación (simulador) de plantas de depuradoras, basado en datos de literatura. Para el caso de una planta real, se ha desarrollado un simulador de la planta de Manresa (Catalunya). Sin embargo, el sistema de Manresa se ha utilizado exclusivamente para auxiliar los ingenieros de la planta en la tomada de decisiones de cambio de configuración para que la eliminación de fósforo se dé por la ruta biológica y no por la ruta química. La implementación de los simuladores ha permitido hacer muchas pruebas que en una planta real demandarían mucho tiempo y consumirían muchos recursos energéticos y financieros. Las estrategias de control más elaboradas han podido ahorrar hasta 150.000,00 Euros por año en relación a la operación de la planta sin el control automático. Cuanto a los estudios del modelo de la planta real, se concluyó que la eliminación biológica de fósforo puede sustituir el actual proceso químico de eliminación de fósforo, bajando los costes operacionales (costes del agente precipitante).
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.
Resumo:
When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy.
Stabilized Petrov-Galerkin methods for the convection-diffusion-reaction and the Helmholtz equations
Resumo:
We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.