41 resultados para Kac-Moody algebras
Resumo:
We describe a model structure for coloured operads with values in the category of symmetric spectra (with the positive model structure), in which fibrations and weak equivalences are defined at the level of the underlying collections. This allows us to treat R-module spectra (where R is a cofibrant ring spectrum) as algebras over a cofibrant spectrum-valued operad with R as its first term. Using this model structure, we give sufficient conditions for homotopical localizations in the category of symmetric spectra to preserve module structures.
Resumo:
We define equivariant semiprojectivity for C* -algebras equipped with actions of compact groups. We prove that the following examples are equivariantly semiprojective: A. Arbitrary finite dimensional C*-algebras with arbitrary actions of compact groups. - B. The Cuntz algebras Od and extended Cuntz algebras Ed, for finite d, with quasifree actions of compact groups. - C. The Cuntz algebra O∞ with any quasifree action of a finite group. For actions of finite groups, we prove that equivariant semiprojectivity is equiv- alent to a form of equivariant stability of generators and relations. We also prove that if G is finite, then C*(G) is graded semiprojective.
Resumo:
We consider the Clifford algebra C(q) of a regular quadratic space (V, q) over a field K with its structure of Z/2Z-graded K-algebra. We give a characterization of the group of graded automorphisms of C(q). In the last section we introduce the Z/nZ-graded algebras and we study as well as the group of graded automorphisms for some of them.
Resumo:
Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.
Resumo:
In this paper we consider a general action principle for mechanics written by means of the elements of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write the action principle. By means of such an action principle we work out the equations of motion and a technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction picture. Classical or quantum mechanics come out as particular cases when we make realizations of the Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on we develop in particular the applications of the action principle to classical and quantum mechanics, seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same footing as in quantum mechanics.
Resumo:
The infinitesimal transformations that leave invariant a two-covariant symmetric tensor are studied. The interest of these symmetry transformations lays in the fact that this class of tensors includes the energy-momentum and Ricci tensors. We find that in most cases the class of infinitesimal generators of these transformations is a finite dimensional Lie algebra, but in some cases exhibiting a higher degree of degeneracy, this class is infinite dimensional and may fail to be a Lie algebra. As an application, we study the Ricci collineations of a type B warped spacetime.
Resumo:
In numerical linear algebra, students encounter earlythe iterative power method, which finds eigenvectors of a matrixfrom an arbitrary starting point through repeated normalizationand multiplications by the matrix itself. In practice, more sophisticatedmethods are used nowadays, threatening to make the powermethod a historical and pedagogic footnote. However, in the contextof communication over a time-division duplex (TDD) multipleinputmultiple-output (MIMO) channel, the power method takes aspecial position. It can be viewed as an intrinsic part of the uplinkand downlink communication switching, enabling estimationof the eigenmodes of the channel without extra overhead. Generalizingthe method to vector subspaces, communication in thesubspaces with the best receive and transmit signal-to-noise ratio(SNR) is made possible. In exploring this intrinsic subspace convergence(ISC), we show that several published and new schemes canbe cast into a common framework where all members benefit fromthe ISC.
Resumo:
We prove that for a topological operad $P$ the operad of oriented cubical singular chains, $C^{\ord}_\ast(P)$, and the operad of simplicial singular chains, $S_\ast(P)$, are weakly equivalent. As a consequence, $C^{\ord}_\ast(P\nsemi\mathbb{Q})$ is formal if and only if $S_\ast(P\nsemi\mathbb{Q})$ is formal, thus linking together some formality results which are spread out in the literature. The proof is based on an acyclic models theorem for monoidal functors. We give different variants of the acyclic models theorem and apply the contravariant case to study the cohomology theories for simplicial sets defined by $R$-simplicial differential graded algebras.