53 resultados para Entropia topològica
Resumo:
We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10¿300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solid¿solid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.
Resumo:
ty that low-energy effective field theory could be sufficient to understand the microscopic degrees of freedom underlying black hole entropy. We propose a qualitative physical picture in which black hole entropy refers to a space of quasicoherent states of infalling matter, together with its gravitational field. We stress that this scenario might provide a low-energy explanation of both the black hole entropy and the information puzzle.
Resumo:
The problem of searchability in decentralized complex networks is of great importance in computer science, economy, and sociology. We present a formalism that is able to cope simultaneously with the problem of search and the congestion effects that arise when parallel searches are performed, and we obtain expressions for the average search cost both in the presence and the absence of congestion. This formalism is used to obtain optimal network structures for a system using a local search algorithm. It is found that only two classes of networks can be optimal: starlike configurations, when the number of parallel searches is small, and homogeneous-isotropic configurations, when it is large.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
We have developed a differential scanning calorimeter capable of working under applied magnetic fields of up to 5 T. The calorimeter is highly sensitive and operates over the temperature range 10¿300 K. It is shown that, after a proper calibration, the system enables determination of the latent heat and entropy changes in first-order solid¿solid phase transitions. The system is particularly useful for investigating materials that exhibit the giant magnetocaloric effect arising from a magnetostructural phase transition. Data for Gd5(Si0.1Ge0.9)4 are presented.
Resumo:
Isothermal magnetization curves up to 23 T have been measured in Gd5Si1.8Ge2.2. We show that the values of the entropy change at the first-order magnetostructural transition, obtained from the Clausius-Clapeyron equation and the Maxwell relation, are coincident, provided the Maxwell relation is evaluated only within the transition region and the maximum applied field is high enough to complete the transition. These values are also in agreement with the entropy change obtained from differential scanning calorimetry. We also show that a simple phenomenological model based on the temperature and field dependence of the magnetization accounts for these results.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
A partir del análisis y crítica de algunos de los presupuestos básicos de la orientación dominante en psicologia cognitiva se discuten las posibilidades del planteamiento conexionista al cual atribuimos, en el marco de los distintos niveles explicativos posibles, el carácter de alternativa verdaderamente psicológica. Las argumentaciones centrales se basan en laspropiedades supuestamente atribuibles a las representaciones (particularmente, su carácter compuesto, sistemático y abstracto) y en la valoración de las posibilidades de aproximación a esas características desde el punto de vista conexionista. Se valora la posibilidad de complementar el enfoque microestructural propio del conexionismo con el análisis del comportamiento global del tip0 de redes implicadas. Esta dinámica global, analizable desde una perspectiva topológica a partir del concepto de estabilidad estructural, es susceptible de mostrar modifcaciones cualitativas que pueden asociarse con algunos fenómenos estudiados clásicarnente en la psicologia del pensamiento y en otros ámbitos
Resumo:
We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.
Resumo:
Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances.
Resumo:
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.
Resumo:
Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.
Resumo:
A fluctuation relation for aging systems is introduced and verified by extensive numerical simulations. It is based on the hypothesis of partial equilibration over phase-space regions in a scenario of entropy-driven relaxation. The relation provides a simple alternative method, amenable of experimental implementation, to measure replica symmetry breaking parameters in aging systems. The connection with the effective temperatures obtained from the fluctuation-dissipation theorem is discussed