On the connectivity of the escaping set for complex exponential Misiurewicz parameters


Autoria(s): Jarque i Ribera, Xavier
Contribuinte(s)

Universitat de Barcelona

Data(s)

13/03/2014

Resumo

Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.

Identificador

http://hdl.handle.net/2445/51504

Idioma(s)

eng

Publicador

American Mathematical Society (AMS)

Direitos

(c) American Mathematical Society (AMS), 2011

info:eu-repo/semantics/openAccess

Palavras-Chave #Dinàmica #Funcions holomorfes #Dinàmica topològica #Dynamics #Holomorphic functions #Topological dynamics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion