On the connectivity of the escaping set for complex exponential Misiurewicz parameters
Contribuinte(s) |
Universitat de Barcelona |
---|---|
Data(s) |
13/03/2014
|
Resumo |
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set. |
Identificador | |
Idioma(s) |
eng |
Publicador |
American Mathematical Society (AMS) |
Direitos |
(c) American Mathematical Society (AMS), 2011 info:eu-repo/semantics/openAccess |
Palavras-Chave | #Dinàmica #Funcions holomorfes #Dinàmica topològica #Dynamics #Holomorphic functions #Topological dynamics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |