46 resultados para Electric field simulations
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.
Resumo:
We present a theory of the surface noise in a nonhomogeneous conductive channel adjacent to an insulating layer. The theory is based on the Langevin approach which accounts for the microscopic sources of fluctuations originated from trapping¿detrapping processes at the interface and intrachannel electron scattering. The general formulas for the fluctuations of the electron concentration, electric field as well as the current-noise spectral density have been derived. We show that due to the self-consistent electrostatic interaction, the current noise originating from different regions of the conductive channel appears to be spatially correlated on the length scale correspondent to the Debye screening length in the channel. The expression for the Hooge parameter for 1/f noise, modified by the presence of Coulomb interactions, has been derived
Resumo:
An analytical theory to describe the combined effects of the epitaxial layer thickness and the ohmic contact on the noise properties of Schottky barrier diodes is presented. The theory, which provides information on both the local and the global noise properties, takes into account the finite size of the epitaxial layer and the effects of the back ohmic contact, and applies to the whole range of applied bias. It is shown that by scaling down the epitaxial layer thickness, the current regime in which the noise temperature displays a shot-noise-like behavior increases at the cost of reducing the current range in which the thermal-noise-like behavior dominates. This improvement in noise temperature is limited by the effects of the ohmic contact, which appear for large currents. The theory is formulated on general trends, allowing its application to the noise analysis of other semiconductor devices operating under strongly inhomogeneous distributions of the electric field and charge concentrations.
Resumo:
The aim of this project is to accomplish an application software based on Matlab to calculate the radioelectrical coverage by surface wave of broadcast radiostations in the band of Medium Wave (WM) all around the world. Also, given the location of a transmitting and a receiving station, the software should be able to calculate the electric field that the receiver should receive at that specific site. In case of several transmitters, the program should search for the existence of Inter-Symbol Interference, and calculate the field strenght accordingly. The application should ask for the configuration parameters of the transmitter radiostation within a Graphical User Interface (GUI), and bring back the resulting coverage above a map of the area under study. For the development of this project, it has been used several conductivity databases of different countries, and a high-resolution elevation database (GLOBE). Also, to calculate the field strenght due to groundwave propagation, it has been used ITU GRWAVE program, which must be integrated into a Matlab interface to be used by the application developed.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
La meva incorporació al grup de recerca del Prof. McCammon (University of California San Diego) en qualitat d’investigador post doctoral amb una beca Beatriu de Pinós, va tenir lloc el passat 1 de desembre de 2010; on vaig dur a terme les meves tasques de recerca fins al darrer 1 d’abril de 2012. El Prof. McCammon és un referent mundial en l’aplicació de simulacions de dinàmica molecular (MD) en sistemes biològics d’interès humà. La contribució més important del Prof. McCammon en la simulació de sistemes biològics és el desenvolupament del mètode de dinàmiques moleculars accelerades (AMD). Les simulacions MD convencionals, les quals estan limitades a l’escala de temps del nanosegon (~10-9s), no son adients per l’estudi de sistemes biològics rellevants a escales de temps mes llargues (μs, ms...). AMD permet explorar fenòmens moleculars poc freqüents però que son clau per l’enteniment de molts sistemes biològics; fenòmens que no podrien ser observats d’un altre manera. Durant la meva estada a la “University of California San Diego”, vaig treballar en diferent aplicacions de les simulacions AMD, incloent fotoquímica i disseny de fàrmacs per ordinador. Concretament, primer vaig desenvolupar amb èxit una combinació dels mètodes AMD i simulacions Car-Parrinello per millorar l’exploració de camins de desactivació (interseccions còniques) en reaccions químiques fotoactivades. En segon lloc, vaig aplicar tècniques estadístiques (Replica Exchange) amb AMD en la descripció d’interaccions proteïna-lligand. Finalment, vaig dur a terme un estudi de disseny de fàrmacs per ordinador en la proteïna-G Rho (involucrada en el desenvolupament de càncer humà) combinant anàlisis estructurals i simulacions AMD. Els projectes en els quals he participat han estat publicats (o estan encara en procés de revisió) en diferents revistes científiques, i han estat presentats en diferents congressos internacionals. La memòria inclosa a continuació conté més detalls de cada projecte esmentat.
Resumo:
We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.
Resumo:
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation.
Resumo:
We present a mean field model that describes the effect of multiplicative noise in spatially extended systems. The model can be solved analytically. For the case of the phi4 potential it predicts that the phase transition is shifted. This conclusion is supported by numerical simulations of this model in two dimensions.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
We study numerically the out-of-equilibrium dynamics of the hypercubic cell spin glass in high dimensionalities. We obtain evidence of aging effects qualitatively similar both to experiments and to simulations of low-dimensional models. This suggests that the Sherrington-Kirkpatrick model as well as other mean-field finite connectivity lattices can be used to study these effects analytically.
Resumo:
We study the electric dipole polarizability α D in 208 Pb based on the predictions of a large and representative set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better understand the correlations between α D and other isovector observables. Insights from the droplet model suggest that the product of α D and the nuclear symmetry energy at saturation density J is much better correlated with the neutron skin thickness r np of 208 Pb than the polarizability alone. Correlations of α D J with r np and with the symmetry energy slope parameter L suggest that α D J is a strong isovector indicator. Hence, we explore the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our theoretical predictions against measurements of both α D and the parity-violating asymmetry in 208 Pb. We find that the recent experimental determination of α D in 208 Pb in combination with the range for the symmetry energy at saturation density J = [31 ± (2) est] MeV suggests r np (208 Pb) = 0 . 165 ± (0 . 009) expt ± (0 . 013) theor ± (0.021) est fm and L = 43 ± (6) expt ± (8) theor ± (12) est MeV
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
A theoretical model for the noise properties of n+nn+ diodes in the drift-diffusion framework is presented. In contrast with previous approaches, our model incorporates both the drift and diffusive parts of the current under inhomogeneous and hot-carrier conditions. Closed analytical expressions describing the transport and noise characteristics of submicrometer n+nn+ diodes, in which the diode base (n part) and the contacts (n+ parts) are coupled in a self-consistent way, are obtained