79 resultados para Computational prediction
Resumo:
The identification and integration of reusable and customizable CSCL (Computer Supported Collaborative Learning) may benefit from the capture of best practices in collaborative learning structuring. The authors have proposed CLFPs (Collaborative Learning Flow Patterns) as a way of collecting these best practices. To facilitate the process of CLFPs by software systems, the paper proposes to specify these patterns using IMS Learning Design (IMS-LD). Thus, teachers without technical knowledge can particularize and integrate CSCL tools. Nevertheless, the support of IMS-LD for describing collaborative learning activities has some deficiencies: the collaborative tools that can be defined in these activities are limited. Thus, this paper proposes and discusses an extension to IMS-LD that enables to specify several characteristics of the use of tools that mediate collaboration. In order to obtain a Unit of Learning based on a CLFP, a three stage process is also proposed. A CLFP-based Unit of Learning example is used to illustrate the process and the need of the proposed extension.
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.
Resumo:
In the last few years, there has been a growing focus on faster computational methods to support clinicians in planning stenting procedures. This study investigates the possibility of introducing computational approximations in modelling stent deployment in aneurysmatic cerebral vessels to achieve simulations compatible with the constraints of real clinical workflows. The release of a self-expandable stent in a simplified aneurysmatic vessel was modelled in four different initial positions. Six progressively simplified modelling approaches (based on Finite Element method and Fast Virtual Stenting – FVS) have been used. Comparing accuracy of the results, the final configuration of the stent is more affected by neglecting mechanical properties of materials (FVS) than by adopting 1D instead of 3D stent models. Nevertheless, the differencesshowed are acceptable compared to those achieved by considering different stent initial positions. Regarding computationalcosts, simulations involving 1D stent features are the only ones feasible in clinical context.
Resumo:
In a distributed key distribution scheme, a set of servers helps a set of users in a group to securely obtain a common key. Security means that an adversary who corrupts some servers and some users has no information about the key of a noncorrupted group. In this work, we formalize the security analysis of one such scheme which was not considered in the original proposal. We prove the scheme is secure in the random oracle model, assuming that the Decisional Diffie-Hellman (DDH) problem is hard to solve. We also detail a possible modification of that scheme and the one in which allows us to prove the security of the schemes without assuming that a specific hash function behaves as a random oracle. As usual, this improvement in the security of the schemes is at the cost of an efficiency loss.
Resumo:
The current research in Music Information Retrieval (MIR) is showing the potential that the Information Technologies can have in music related applications. Amajor research challenge in that direction is how to automaticallydescribe/annotate audio recordings and how to use the resulting descriptions to discover and appreciate music in new ways. But music is a complex phenomenonand the description of an audio recording has to deal with this complexity. For example, each musicculture has specificities and emphasizes different musicaland communication aspects, thus the musical recordings of each culture should be described differently. At the same time these cultural specificities give us the opportunity to pay attention to musical concepts andfacets that, despite being present in most world musics, are not easily noticed by listeners. In this paper we present some of the work done in the CompMusic project, including ideas and specific examples on how to take advantage of the cultural specificities of differentmusical repertoires. We will use examples from the art music traditions of India, Turkey and China.
Resumo:
We present simple procedures for the prediction of a real valued sequence. The algorithms are based on a combinationof several simple predictors. We show that if the sequence is a realization of a bounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes.
Resumo:
Sequential randomized prediction of an arbitrary binary sequence isinvestigated. No assumption is made on the mechanism of generating the bit sequence. The goal of the predictor is to minimize its relative loss, i.e., to make (almost) as few mistakes as the best ``expert'' in a fixed, possibly infinite, set of experts. We point out a surprising connection between this prediction problem and empirical process theory. First, in the special case of static (memoryless) experts, we completely characterize the minimax relative loss in terms of the maximum of an associated Rademacher process. Then we show general upper and lower bounds on the minimaxrelative loss in terms of the geometry of the class of experts. As main examples, we determine the exact order of magnitude of the minimax relative loss for the class of autoregressive linear predictors and for the class of Markov experts.
Resumo:
Until recently farm management made little use of accounting and agriculture has been largely excluded from the scope of accounting standards. This article examines the current use of accounting in agriculture and points theneed to establish accounting standards for agriculture. Empirical evidence shows that accounting can make a significant contribution to agricultural management and farm viability and could also be important for other agents involved in agricultural decision making. Existing literature on failureprediction models and farm viability prediction studies provide the starting point for our research, in which two dichotomous logit models were applied to subsamples of viable and unviable farms in Catalonia, Spain. The firstmodel considered only non-financial variables, while the other also considered financial ones. When accounting variables were added to the model, a significant reduction in deviance was observed.
Resumo:
We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from recent developments of the theory of the prediction of individual sequences. We show that if thesequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor.
Resumo:
The aim of this work was the use of NIR technology by direct application of a fiber optic probe on back fat to analyze the fatty acid composition of CLA fed boars and gilts. 265 animals were fed 3 different diets and the fatty acid profile of back fat from Gluteus medius was analyzed using gas chromatography and FT-NIR. Spectra were acquired using a Bruker Optics Matrix-F duplex spectrometer equipped with a fiber optic probe (IN-268-2). Oleic and stearic fatty acids were predicted accurately; myristic, vaccenic and linoleic fatty acids were predicted with lower accuracy, while palmitic and α-linolenic fatty acids were poorly predicted. The relative percentage of fatty acids and NIR spectra showed differences in fatty acid composition of back fat from pigs fed CLA which increased the relative percentage of SFA and PUFA while MUFA decreased. Results suggest that a NIR fiber optic probe can be used to predict total saturated and unsaturated fatty acid composition, as well as the percentage of stearic and oleic. NIR showed potential as a rapid and easily implemented method to discriminate carcasses from animals fed different diets.
Resumo:
The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelationbetween variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics
Resumo:
[spa] La mayoría de siniestros con daños corporales se liquidan mediante negociación, llegando a juicio menos del 5% de los casos. Una estrategia de negociación bien definida es, por tanto, fundamental para las compañías aseguradoras. En este artículo asumimos que la compensación monetaria concedida en juicio es la máxima cuantía que debería ser ofrecida por el asegurador en el proceso de negociación. Usando una base de datos real, implementamos un modelo log-lineal para estimar la máxima oferta de negociación. Perturbaciones no-esféricas son detectadas. Correlación ocurre cuando más de una siniestro se liquida en la misma sentencia judicial. Heterocedasticidad por grupos se debe a la influencia de la valoración del forense en la indemnización final.
Resumo:
[spa] La mayoría de siniestros con daños corporales se liquidan mediante negociación, llegando a juicio menos del 5% de los casos. Una estrategia de negociación bien definida es, por tanto, fundamental para las compañías aseguradoras. En este artículo asumimos que la compensación monetaria concedida en juicio es la máxima cuantía que debería ser ofrecida por el asegurador en el proceso de negociación. Usando una base de datos real, implementamos un modelo log-lineal para estimar la máxima oferta de negociación. Perturbaciones no-esféricas son detectadas. Correlación ocurre cuando más de una siniestro se liquida en la misma sentencia judicial. Heterocedasticidad por grupos se debe a la influencia de la valoración del forense en la indemnización final.