74 resultados para Bayesian
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
This paper addresses the issue of policy evaluation in a context in which policymakers are uncertain about the effects of oil prices on economic performance. I consider models of the economy inspired by Solow (1980), Blanchard and Gali (2007), Kim and Loungani (1992) and Hamilton (1983, 2005), which incorporate different assumptions on the channels through which oil prices have an impact on economic activity. I first study the characteristics of the model space and I analyze the likelihood of the different specifications. I show that the existence of plausible alternative representations of the economy forces the policymaker to face the problem of model uncertainty. Then, I use the Bayesian approach proposed by Brock, Durlauf and West (2003, 2007) and the minimax approach developed by Hansen and Sargent (2008) to integrate this form of uncertainty into policy evaluation. I find that, in the environment under analysis, the standard Taylor rule is outperformed under a number of criteria by alternative simple rules in which policymakers introduce persistence in the policy instrument and respond to changes in the real price of oil.
Resumo:
Given a sample from a fully specified parametric model, let Zn be a given finite-dimensional statistic - for example, an initial estimator or a set of sample moments. We propose to (re-)estimate the parameters of the model by maximizing the likelihood of Zn. We call this the maximum indirect likelihood (MIL) estimator. We also propose a computationally tractable Bayesian version of the estimator which we refer to as a Bayesian Indirect Likelihood (BIL) estimator. In most cases, the density of the statistic will be of unknown form, and we develop simulated versions of the MIL and BIL estimators. We show that the indirect likelihood estimators are consistent and asymptotically normally distributed, with the same asymptotic variance as that of the corresponding efficient two-step GMM estimator based on the same statistic. However, our likelihood-based estimators, by taking into account the full finite-sample distribution of the statistic, are higher order efficient relative to GMM-type estimators. Furthermore, in many cases they enjoy a bias reduction property similar to that of the indirect inference estimator. Monte Carlo results for a number of applications including dynamic and nonlinear panel data models, a structural auction model and two DSGE models show that the proposed estimators indeed have attractive finite sample properties.
Resumo:
This paper tries to resolve some of the main shortcomings in the empirical literature of location decisions for new plants, i.e. spatial effects and overdispersion. Spatial effects are omnipresent, being a source of overdispersion in the data as well as a factor shaping the functional relationship between the variables that explain a firm’s location decisions. Using Count Data models, empirical researchers have dealt with overdispersion and excess zeros by developments of the Poisson regression model. This study aims to take this a step further, by adopting Bayesian methods and models in order to tackle the excess of zeros, spatial and non-spatial overdispersion and spatial dependence simultaneously. Data for Catalonia is used and location determinants are analysed to that end. The results show that spatial effects are determinant. Additionally, overdispersion is descomposed into an unstructured iid effect and a spatially structured effect. Keywords: Bayesian Analysis, Spatial Models, Firm Location. JEL Classification: C11, C21, R30.
Resumo:
Report for the scientific sojourn at the University of Reading, United Kingdom, from January until May 2008. The main objectives have been firstly to infer population structure and parameters in demographic models using a total of 13 microsatellite loci for genotyping approximately 30 individuals per population in 10 Palinurus elephas populations both from Mediterranean and Atlantic waters. Secondly, developing statistical methods to identify discrepant loci, possibly under selection and implement those methods using the R software environment. It is important to consider that the calculation of the probability distribution of the demographic and mutational parameters for a full genetic data set is numerically difficult for complex demographic history (Stephens 2003). The Approximate Bayesian Computation (ABC), based on summary statistics to infer posterior distributions of variable parameters without explicit likelihood calculations, can surmount this difficulty. This would allow to gather information on different demographic prior values (i.e. effective population sizes, migration rate, microsatellite mutation rate, mutational processes) and assay the sensitivity of inferences to demographic priors by assuming different priors.
Resumo:
Els rius i rieres mediterranis són ecosistemes que es caracteritzen per fortes oscil•lacions de cabal i temperatura al llarg de l’any. Aquestes oscil•lacions provoquen canvis ambientals en l'hàbitat i en els recursos que afecten directament o indirecta la biota que habita aquests ecosistemes, la qual, per tant, ha de presentar adaptacions a aquestes oscil•lacions ambientals. L'escenari actual de canvi climàtic preveu una intensificació dels fenòmens de sequera i augment de temperatura. Entendre com la biota dels rius respon a aquestes fluctuacions és de gran importància per poder anticipar les respostes d'aquests sistemes als imminents canvis ambientals així com per gestionar adequadament els recursos hídrics en un futur. Els objectius principals d'aquesta tesi eren: caracteritzar estructural i funcionalment dues rieres intermitents mediterrànies al llarg dels diferents períodes característics del cicle anual i veure els efectes d'un augment de la sequera; veure com aquests efectes podien afectar l'ecosistema ripari circumdant i establir com diferències en la qualitat de la matèria orgànica derivades del canvi climàtic pot afectar el fitness i desenvolupament dels invertebrats. Aquests objectius s'han pogut complir només parcialment, ja que adversitats climàtiques van impedir finalitzar amb èxit la manipulació del cabal al camp i la resolució d'algunes dades no ha estat prou bona com per aplicar els models corresponents. Aquests contratemps s'han solucionat amb la incorporació de dos nous experiments (un encara s'ha de realitzar), fet que ha fet enlentir la finalització de la tesi.
Resumo:
La localització d'òrgans és un tòpic important en l'àmbit de la imatge mèdica per l'ajuda del tractament i diagnosi del càncer. Un exemple es pot trobar en la cal•libració de models farmacoquinètics. Aquesta pot ésser realitzada utilitzant un teixit de referència, on, per exemple en imatges de ressonància magnètica de pit, una correcta segmentació del múscul pectoral és necessària per a la detecció de signes de malignitat. Els mètodes de segmentació basat en atlas han estat altament avaluats en imatge de ressonància magnètica de cervell, obtenint resultats satisfactoris. En aquest projecte, en col•laboració amb el el Diagnostic Image Analysis Group de la Radboud University Nijmegen Medical Centre i la supervisió del Dr. N.Karssemeijer, es presenta la primera aproximació d'un mètode de segmentació basat en atlas per segmentar els diferents teixits visibles en imatges de ressonància magnètica (T1) del pit femení. L'atlas consisteix en 5 estructures (teixit greixòs, teixit dens, cor, pulmons i múscul pectoral) i ha estat utilitzat en un algorisme de segmentació Bayesià per tal de delinear les esmentades estructures. A més a més, s'ha dut a terme una comparació entre un mètode de registre global i un de local, utilitzats tant en la construcció de l'atlas com en la fase de segmentació, essent el primer el que ha presentat millors resultats en termes d'eficiència i precisió. Per a l'avaluació, s'ha dut a terme una comparació visual i numèrica entre les segmentacions obtingudes i les realitzades manualment pels experts col•laboradors. Pel que fa a la numèrica, s'ha emprat el coeficient de similitud de Dice ( mesura que dóna valors entre 0 i 1, on 0 significa no similitud i 1 similitud màxima) i s'ha obtingut una mitjana general de 0.8. Aquest resultat confirma la validesa del mètode presentat per a la segmentació d'imatges de ressonància magnètica del pit.
Resumo:
A condition needed for testing nested hypotheses from a Bayesianviewpoint is that the prior for the alternative model concentratesmass around the small, or null, model. For testing independencein contingency tables, the intrinsic priors satisfy this requirement.Further, the degree of concentration of the priors is controlled bya discrete parameter m, the training sample size, which plays animportant role in the resulting answer regardless of the samplesize.In this paper we study robustness of the tests of independencein contingency tables with respect to the intrinsic priors withdifferent degree of concentration around the null, and comparewith other “robust” results by Good and Crook. Consistency ofthe intrinsic Bayesian tests is established.We also discuss conditioning issues and sampling schemes,and argue that conditioning should be on either one margin orthe table total, but not on both margins.Examples using real are simulated data are given
Resumo:
The quantitative estimation of Sea Surface Temperatures from fossils assemblages is afundamental issue in palaeoclimatic and paleooceanographic investigations. TheModern Analogue Technique, a widely adopted method based on direct comparison offossil assemblages with modern coretop samples, was revised with the aim ofconforming it to compositional data analysis. The new CODAMAT method wasdeveloped by adopting the Aitchison metric as distance measure. Modern coretopdatasets are characterised by a large amount of zeros. The zero replacement was carriedout by adopting a Bayesian approach to the zero replacement, based on a posteriorestimation of the parameter of the multinomial distribution. The number of modernanalogues from which reconstructing the SST was determined by means of a multipleapproach by considering the Proxies correlation matrix, Standardized Residual Sum ofSquares and Mean Squared Distance. This new CODAMAT method was applied to theplanktonic foraminiferal assemblages of a core recovered in the Tyrrhenian Sea.Kew words: Modern analogues, Aitchison distance, Proxies correlation matrix,Standardized Residual Sum of Squares
Resumo:
The application of Discriminant function analysis (DFA) is not a new idea in the studyof tephrochrology. In this paper, DFA is applied to compositional datasets of twodifferent types of tephras from Mountain Ruapehu in New Zealand and MountainRainier in USA. The canonical variables from the analysis are further investigated witha statistical methodology of change-point problems in order to gain a betterunderstanding of the change in compositional pattern over time. Finally, a special caseof segmented regression has been proposed to model both the time of change and thechange in pattern. This model can be used to estimate the age for the unknown tephrasusing Bayesian statistical calibration
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics
Resumo:
It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment
Resumo:
Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.
Resumo:
Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.
Resumo:
Background: One of the main goals of cancer genetics is to identify the causative elements at the molecular level leading to cancer.Results: We have conducted an analysis of a set of genes known to be involved in cancer in order to unveil their unique features that can assist towards the identification of new candidate cancer genes. Conclusion: We have detected key patterns in this group of genes in terms of the molecular function or the biological process in which they are involved as well as sequence properties. Based on these features we have developed an accurate Bayesian classification model with which human genes have been scored for their likelihood of involvement in cancer.